Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22040201-5    https://doi.org/10.11896/cldb.22040201
  金属与金属基复合材料 |
Xe23+离子束轰击低温工况下的无氧铜表面解吸性能研究
焦纪强1,2, 蒙峻1,2,3,*, 罗成1,2,3, 柴振1,3, 谢文君1
1 中国科学院近代物理研究所,兰州 730000
2 先进能源科学与技术广东省实验室,广东 惠州 516003
3 中国科学院大学核科学与技术学院,北京 100049
Research on the Desorption Yields of Oxygen-free Copper Under Low Temperature Bombarded with Xe23+
JIAO Jiqiang1,2, MENG Jun1,2,3,*, LUO Cheng1,2,3, CHAI Zhen1,3, XIE Wenjun1
1 Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, China
2 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516003, Guangdong, China
3 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 7969KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 强流重离子加速器运行时产生动态真空效应引起束流寿命缩短,需安装无氧铜束流准直器来降低该效应。为探究无氧铜材料在离子束轰击下的解吸性能,本工作设计并研制了满足低温工况的解吸率测试装置,在兰州重离子加速器国家实验室利用Xe23+离子束完成了无氧铜温度在4.2 K、20 K、77 K和300 K,以及束流能量为0.58 MeV/u、0.96 MeV/u和1.3 MeV/u的在束试验。结果表明,离子束轰击无氧铜表面时解吸出最多的分子为H2,其次分别为H2O、CO、CO2、Ar和O2;当温度为4.2 K、束流能量为0.58 MeV/u时无氧铜解吸出H2的比例为87.74%。在同一能量下,随着无氧铜表面温度的升高,解吸率呈增加趋势,能量为0.58 MeV/u时,4.2 K下无氧铜的解吸率仅为25 mol/ion,小于300 K时的600 mol/ion,表明温度越高其解吸产额越大。在同一温度下,随着束流能量的升高无氧铜表面解吸率增加,但增加趋势逐渐减缓,解吸产额趋向饱和。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦纪强
蒙峻
罗成
柴振
谢文君
关键词:  强流重离子加速器  无氧铜  低温工况  解吸率  在束试验    
Abstract: The dynamic vacuum effect during the operation of high intensity heavy-ion accelerator facility, which destroys ultra-high vacuum stable environment and causes the beam lifetime to decrease. It is necessary to install an oxygen-free copper collimator to minimizing the dynamic va-cuum effect. To research the desorption yields of oxygen-free copper under different temperature conditions, a low temperature desorption yields test system was developed. Beam experiments of oxygen-free copper at 4.2 K, 20 K, 77 K and 300 K were competed in Lanzhou Heavy Ion Accelerator National Laboratory using continuous Xe23+ ions with 0.58 MeV/u, 0.96 MeV/u and 1.3 MeV/u. The result showed that the main desorbed molecule was H2, and followed by H2O, CO, CO2, Ar and O2 under the beam bombarded oxygen-free copper conditions. Besides, the proportion of oxygen-free copper desorbed H2 was 87.74% when the temperature was 4.2 K and the energy was 0.58 MeV/u. At the same energy, the desorption yields were increased gradually with the oxygen-free copper temperature rising. The desorption yield of oxygen-free copper was only 25 mol/ion at 4.2 K and 0.58 MeV/u, which was less than 600 mol/ion at 300 K, indicating that the higher oxygen-free copper temperature, the greater the desorption yield. At the same temperature, the desorption yields were increased with the increasing of beam energy, but the trend slow down and the desorption yields tends to be saturated.
Key words:  high intensity heavy-ion accelerator    oxygen-free copper    low temperature    desorption yield    beam experiment
出版日期:  2024-01-10      发布日期:  2024-01-16
ZTFLH:  TB31  
  TB741  
基金资助: 兰州重离子加速器运行维护(Y9HIRLL100);中国科学院重大科技基础设施项目(E229541YWG)
通讯作者:  蒙峻,中国科学院大学核技术及应用专业博士研究生导师,中国科学院近代物理研究所正高级工程师。2009年6月于中国科学院大学获得博士学位。长期从事真空技术、材料镀膜技术、极高真空获得技术等研究工作。发表论文60余篇,申请专利9项。主持国家级强流重离子加速器真空系统项目1项、省级科研项目3项。mengjun@impcas.ac.cn   
作者简介:  焦纪强,工程师,2018年6月于兰州理工大学获得硕士学位。毕业后进入中国科学院近代物理研究所加速器技术中心工作。目前主要从事极高真空环境下真空材料性能、极高真空获得技术等相关研究。
引用本文:    
焦纪强, 蒙峻, 罗成, 柴振, 谢文君. Xe23+离子束轰击低温工况下的无氧铜表面解吸性能研究[J]. 材料导报, 2024, 38(1): 22040201-5.
JIAO Jiqiang, MENG Jun, LUO Cheng, CHAI Zhen, XIE Wenjun. Research on the Desorption Yields of Oxygen-free Copper Under Low Temperature Bombarded with Xe23+. Materials Reports, 2024, 38(1): 22040201-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040201  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22040201
1 Xiao G Q, Xu H S, Wang S C. Nuclear Physics Review, 2017, 34(3), 9 (in Chinese).
肖国青, 徐瑚珊, 王思成. 原子核物理评论, 2017, 34(3), 9.
2 Yang J C, Xia J W, Xiao G Q, et al. Nuclear Instruments and Methods in Physics Research Section B, 2013, 317, 263.
3 Luo C, Li P, Xie W J, et al. Vacuum, 2018, 157, 159.
4 Li P, Yuan Y J, Yang J C, et al. Physical Review Special Topics-Accele-rators and Beams, 2014, 17(8), 084201.
5 Meng J, Yang W S, Luo C, et al. Chinese Journal of Vacuum Science and Technology, 2021, 41(9), 826 (in Chinese).
蒙峻, 杨伟顺, 罗成, 等. 真空科学与技术学报, 2021, 41(9), 826.
6 Seidel M. In: Proceedings of the 1977 Particle Accelerator Conference. Canada, 1977, pp. 434.
7 Mahner E, Efthymiopoulos I, Hansen J, et al. Physical Review Special Topics-Accelerators and Beams, 2004, 7(10), 357.
8 Mahner E, Hansen J, Laurent J M, et al. Physical Review Special Topics-Accelerators and Beams, 2003, 6(1), 013201.
9 Moulard G, Jenninger G, Saito Y. Vacuum, 2001, 60, 43.
10 Xie W J, Meng J, Li C C, et al. Vacuum, 2021, 194, 110636.
11 Hedlund E, Westerberg L, Malyshev O B, et al. Nuclear Instruments and Methods in Physics Research, 2009, A599(1), 1.
12 Kollmus H, Bender M, Severin D, et al. Physical Review Special Topics-Accelerators and Beams, 2013, 16, 083201.
13 Moleculesvik A W, Kollmus H, Mahner E, et al. Physical Review Letters, 2007, 98(6), 064801.
14 Mustafin E, Boine-Frankenheim O, Hofmann I, et al. Nuclear Instruments and Methods in Physics Research Section A, 2003, 510(3), 199.
15 Maurer C, Hoffmann D, Bozyk L, et al. In: Proceedings of the 5th International Particle Accelerator Conference. Dresden, 2014, pp. 3.
16 Yang Y, Wang G, Yu J C, et al. Materials Reports A: Review Papers, 2017, 31(3), 52 (in Chinese).
杨洋, 王罡, 俞建超, 等. 材料导报: 综述篇, 2017, 31(3), 52.
17 Cheng M. Studyon corrosion behavior of oxygen free copper in domestic water in northern area. Master’s Thesis, Shenzhen University, China, 2017 (in Chinese).
程淼. 无氧铜在北方地区生活用水中腐蚀行为的研究. 硕士学位论文, 深圳大学, 2017.
18 Kollmus H, Bender M, Kramer A, et al. In:GSI Scientific Report, 2005, pp.316.
[1] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[4] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[5] 杨玉芳, 胡晋龙, 刘永博, 王明涛. Fe-3%Si合金薄带连铸板热处理过程层状异构组织演变的相场模拟研究[J]. 材料导报, 2024, 38(11): 22110098-7.
[6] 张墅野, 邵建航, 何鹏. 银纳米线透明导电薄膜仿真研究现状[J]. 材料导报, 2024, 38(10): 22110190-10.
[7] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[8] 周安阳, 郭伟玲, 黄艳斐, 王志远, 王海斗, 邢志国. 磁场对合金材料服役性能影响的研究进展[J]. 材料导报, 2024, 38(10): 22110204-13.
[9] 张昱, 梁沛林, 何钧宇, 杨冠南, 崔成强. 火花放电法制备纳米材料及其应用综述[J]. 材料导报, 2024, 38(7): 22080233-9.
[10] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[11] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[12] 欧阳祚琼, 罗兵辉, 邓攀, 莫文锋, 柏振海. 终轧温度对2024铝合金晶间腐蚀和力学性能的影响[J]. 材料导报, 2023, 37(11): 21110100-7.
[13] 黄兵, 刘萍. 金属网格柔性透明导电薄膜研究进展[J]. 材料导报, 2023, 37(5): 21030214-12.
[14] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[15] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed