Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22040113-6    https://doi.org/10.11896/cldb.22040113
  金属与金属基复合材料 |
热处理对羰基铁基吸波涂层微观结构和力学性能的影响
邓妍1, 洪森1, 曹湘杰1, 蒋曜年2, 戴翠英1,2, 毛卫国1,2,*, 张有为3,*, 刘平桂3
1 湘潭大学材料科学与工程学院,湖南 湘潭 411105
2 长沙理工大学材料科学与工程学院,长沙 410014
3 中国航发北京航空材料研究院隐身与涂料所,北京 100095
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Carbonyl Iron-based Wave Absorbing Coatings
DENG Yan1, HONG Sen1, CAO Xiangjie1, JIANG Yaonian2, DAI Cuiying1,2, MAO Weiguo1,2,*, ZHANG Youwei3,*, LIU Pinggui3
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
2 School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China
3 Stealth & Coatings Institute, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
下载:  全 文 ( PDF ) ( 18171KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在服役温度范围内研究羰基铁复合吸波涂层材料微观结构和性能演变对揭示其断裂失效机理和优化工艺参数具有十分重要的意义。采用空气喷涂法制备了羰基铁/聚硅氮烷吸波涂层,并在550 ℃下进行不同时间的热处理,分析热处理前后涂层的红外吸收性质、物相组成、微观形貌、硬度变化;采用万能试验机测试了热处理前后吸波涂层的结合性能。结果表明,由于热处理时间的延长,在高温和氧气影响下羰基铁热解产生以α-Fe2O3为主要物相的纳米花结构;在550 ℃热处理80 h后,涂层的平均结合强度达到最高值(11.88±1.10) MPa;热处理400 h后,涂层的平均维氏硬度达到最高值104.56HV±22.97HV。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓妍
洪森
曹湘杰
蒋曜年
戴翠英
毛卫国
张有为
刘平桂
关键词:  羰基铁粉  吸波涂层  花状结构  硬度  结合强度    
Abstract: It is of great significance to study the microstructure and properties evolution of carbonyl iron composite absorbing coating materials in the service temperature range to reveal the failure mechanism and optimize the process parameters. In this work, the carbonyl iron/polysilazane wave-absorbing coatings were prepared by the air spraying method and heat-treated at 550 ℃ for different time. The properties of infrared absorption, phase composition, microstructure, and hardness of the coating before and after heat treatments were analyzed. The tensile tests were carried out by a universal testing machine. The results show that the average adhesive strength of the coating reaches (11.88±1.10) MPa at 550 ℃ for 80 h, the hardness is 104.56HV±22.97HV for 400 h.
Key words:  carbonyl iron    wave absorbing coating    flower-like structure    hardness    adhesive strength
发布日期:  2024-01-16
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11772287);国家科技重大专项(J2019-VI-0017-0132);国家重点研发计划(2021YFB3702304-4);国防基础科研项目(WDZC20195500501)
通讯作者:  毛卫国,2006年在湘潭大学获博士学位,现任长沙理工大学二级教授、博士研究生导师。长期从事高端装备先进涂层制备及性能评价,先后发表论文80余篇,授权国家发明专利11项。ssamao@126.com;
张有为,中国航发北京航空材料研究院第九研究所科技委副主任、高温XX专业组组长。发表了25篇高水平的学术论文,申请35项专利(第一发明人19项),授权7项。ywzhang_pku@163.com   
作者简介:  邓妍,2022年6月于湘潭大学获得硕士学位。目前主要从事高温隐身材料制备与性能评价。
引用本文:    
邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
DENG Yan, HONG Sen, CAO Xiangjie, JIANG Yaonian, DAI Cuiying, MAO Weiguo, ZHANG Youwei, LIU Pinggui. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Carbonyl Iron-based Wave Absorbing Coatings. Materials Reports, 2024, 38(1): 22040113-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040113  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22040113
1 Fan J, Zhang L B, Liu Y Y, et al. China Coatings, 2020, 30(2), 20 (in Chinese).
范靖, 张林博, 刘越洋, 等. 中国涂料, 2020, 30(2), 20.
2 Huang H F, He Z Y. Adhesion, 2021, 48(11), 17 (in Chinese).
黄卉芬, 何紫莹. 粘接, 2021, 48(11), 17.
3 You J H, Xie J L, Zhang L B. Paint and Coatings Industry, 2018, 48(7), 1 (in Chinese).
游建辉, 谢建良, 张林博. 涂料工业, 2018, 48(7), 1.
4 Qing Y C, Zhou W C, Luo F, et al. Journal of Magnetism and Magnetic Materials, 2009, 321(1), 25.
5 Liu H, Gao Y L, Zhao D L, et al. Safety and Electromagnetic Compatibility, 2010(6), 71 (in Chinese).
刘辉, 高云雷, 赵东林, 等. 安全与电磁兼容, 2010(6), 71.
6 Ma P W, Woo C, Dudayev S L. Philosophical Magazine, 2009, 89(32), 2921.
7 Zhou Y Y, Zhou W C, Luo F, et al. Materials Reports, 2013, 27(13), 122 (in Chinese).
周影影, 周万城, 罗发, 等. 材料导报, 2013, 27(13), 122.
8 Zhu Y B, Qing Y C, Jia S, et al. Materials Reports, 2010, 24(2), 9 (in Chinese).
朱云斌, 卿玉长, 贾舒, 等. 材料导报, 2010, 24(2), 9.
9 Hauser R, Francis A, Theismann R, et al. Journal of Materials Science, 2008, 43(12), 4042.
10 Guo X, Feng Y, Lin X, et al. Journal of the European Ceramic Society, 2017, 38(4), 1327.
11 Wang C Y. Thermodynamic parameters test and stress field prediction of high temperature wave absorbing coatings based on silicon epoxy resin. Master’s Thesis, Xiangtan University, China, 2020 (in Chinese).
王昌义. 有机硅环氧树脂基耐高温吸波涂层热力学参数测试及应力场预测. 硕士学位论文, 湘潭大学, 2020.
12 Gao Y, Gao X Y, Li J, et al. Journal of Applied Polymer Science, 2018, 135(12), 45846.
13 Zhou Y Y, Ma L, Li R, et al. Journal of Magnetism and Magnetic Materials, 2021, 524, 167681.
14 Xu J F, Zhang Y H, Feng Y B, et al. Polymer Composites, 2018, 39(8), 2897.
15 Zhou C, Yang L, Geng H, et al. Ceramics International, 2012, 38(8), 6815.
16 Li Y L, Kroke E, Riedel R, et al. Applied Organometallic Chemistry, 2001, 15(10), 820.
17 Kim K, Ju H, Kim J. Composites Science & Technology, 2017, 141, 1.
18 Liu X L, Ge Z, Zhang W G, et al. High Performance Polymers, 2020, 32(6), 611.
19 Chen S J, Zhang J Q, Su L H. Silicone Material, 2009, 23(4), 246 (in Chinese).
陈少杰, 张教强, 苏力宏. 有机硅材料, 2009, 23(4), 246.
20 Zhu Y X, Li D R, Wu Z G, et al. Journal of Alloys and Compounds, 2021, 860(10), 158434.
21 Wang W, Guo J X, Long C, et al. Journal of Alloys and Compounds, 2015, 637, 106.
22 Ye Y Q, Li X Q, Cheng Z, et al. Vacuum, 2017, 137, 137.
23 An Z G, Zhang J J, Pan S L, et al. The Journal of Physical Chemistry C, 2009, 113(19), 8092.
24 Zhu L P, Bing N C, Wang L L, et al. Dalton Trans, 2012, 41(10), 2959.
25 Zhong L S, Hu J S, Liang H P, et al. Advanced Materials, 2006, 18(18), 2426.
26 Wang L L, Fei T, Lou Z, et al. ACS Applied Materials & Interfaces, 2011, 3(12), 4689.
27 Hao Q Y, Liu S, Yin X M, et al. Solid State Sciences, 2010, 12(12), 2125.
28 Inoue A. Materials Science and Engineering A, 2001, 304(1), 1.
29 Su J B. Preparation and properties of high temperature microwave absor-bing coatings by plasma spraying technology. Ph. D. Thesis, Northwes-tern Polytechnical University, China, 2016 (in Chinese)
苏进步. 等离子喷涂耐高温吸波涂层的制备及性能研究. 博士学位论文, 西北工业大学, 2016.
30 Zhou Y Y. Preparation and properties of microwave absorbing materials with temperature-resistant resin matrix. Ph. D. Thesis, Northwestern Polytechnical University, China, 2016 (in Chinese)
周影影. 耐温树脂基吸波材料的制备及性能研究. 博士学位论文, 西北工业大学, 2016.
31 Zhou L, Zhou W C, Su J B, et al. Applied Surface Science, 2012, 258(7), 2691.
32 Li Y, Cui X, Jin G, et al. Materials and Design, 2017, 123, 54.
33 Wang L R, Wu Y M, Chen X M, et al. Electroplating and Finishing, 2015, 34(22), 1288 (in Chinese).
王莉容, 吴燕明, 陈小明, 等. 电镀与涂饰, 2015, 34(22), 1288.
34 Ochoa-Putman C, Vaidya U K. Composites Part A: Applied Science and Manufacturing, 2011, 42(8), 906.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[3] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[4] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[5] 王涛, 陈冲, 张国赏, 魏世忠, 毛丰, 熊美. 铝钢双金属液固复合铸造研究现状[J]. 材料导报, 2024, 38(17): 22110329-8.
[6] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[7] 居本祥, 付本元, 吕冰. 基于旋转磁场作用的磁流变脂磁致电阻特性研究[J]. 材料导报, 2024, 38(14): 22120138-5.
[8] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[9] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[10] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[11] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[12] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[13] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[14] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[15] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed