Effect of Heat Treatment on the Microstructure and Mechanical Properties of Carbonyl Iron-based Wave Absorbing Coatings
DENG Yan1, HONG Sen1, CAO Xiangjie1, JIANG Yaonian2, DAI Cuiying1,2, MAO Weiguo1,2,*, ZHANG Youwei3,*, LIU Pinggui3
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan, China 2 School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410014, China 3 Stealth & Coatings Institute, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
Abstract: It is of great significance to study the microstructure and properties evolution of carbonyl iron composite absorbing coating materials in the service temperature range to reveal the failure mechanism and optimize the process parameters. In this work, the carbonyl iron/polysilazane wave-absorbing coatings were prepared by the air spraying method and heat-treated at 550 ℃ for different time. The properties of infrared absorption, phase composition, microstructure, and hardness of the coating before and after heat treatments were analyzed. The tensile tests were carried out by a universal testing machine. The results show that the average adhesive strength of the coating reaches (11.88±1.10) MPa at 550 ℃ for 80 h, the hardness is 104.56HV±22.97HV for 400 h.
邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
DENG Yan, HONG Sen, CAO Xiangjie, JIANG Yaonian, DAI Cuiying, MAO Weiguo, ZHANG Youwei, LIU Pinggui. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Carbonyl Iron-based Wave Absorbing Coatings. Materials Reports, 2024, 38(1): 22040113-6.
1 Fan J, Zhang L B, Liu Y Y, et al. China Coatings, 2020, 30(2), 20 (in Chinese). 范靖, 张林博, 刘越洋, 等. 中国涂料, 2020, 30(2), 20. 2 Huang H F, He Z Y. Adhesion, 2021, 48(11), 17 (in Chinese). 黄卉芬, 何紫莹. 粘接, 2021, 48(11), 17. 3 You J H, Xie J L, Zhang L B. Paint and Coatings Industry, 2018, 48(7), 1 (in Chinese). 游建辉, 谢建良, 张林博. 涂料工业, 2018, 48(7), 1. 4 Qing Y C, Zhou W C, Luo F, et al. Journal of Magnetism and Magnetic Materials, 2009, 321(1), 25. 5 Liu H, Gao Y L, Zhao D L, et al. Safety and Electromagnetic Compatibility, 2010(6), 71 (in Chinese). 刘辉, 高云雷, 赵东林, 等. 安全与电磁兼容, 2010(6), 71. 6 Ma P W, Woo C, Dudayev S L. Philosophical Magazine, 2009, 89(32), 2921. 7 Zhou Y Y, Zhou W C, Luo F, et al. Materials Reports, 2013, 27(13), 122 (in Chinese). 周影影, 周万城, 罗发, 等. 材料导报, 2013, 27(13), 122. 8 Zhu Y B, Qing Y C, Jia S, et al. Materials Reports, 2010, 24(2), 9 (in Chinese). 朱云斌, 卿玉长, 贾舒, 等. 材料导报, 2010, 24(2), 9. 9 Hauser R, Francis A, Theismann R, et al. Journal of Materials Science, 2008, 43(12), 4042. 10 Guo X, Feng Y, Lin X, et al. Journal of the European Ceramic Society, 2017, 38(4), 1327. 11 Wang C Y. Thermodynamic parameters test and stress field prediction of high temperature wave absorbing coatings based on silicon epoxy resin. Master’s Thesis, Xiangtan University, China, 2020 (in Chinese). 王昌义. 有机硅环氧树脂基耐高温吸波涂层热力学参数测试及应力场预测. 硕士学位论文, 湘潭大学, 2020. 12 Gao Y, Gao X Y, Li J, et al. Journal of Applied Polymer Science, 2018, 135(12), 45846. 13 Zhou Y Y, Ma L, Li R, et al. Journal of Magnetism and Magnetic Materials, 2021, 524, 167681. 14 Xu J F, Zhang Y H, Feng Y B, et al. Polymer Composites, 2018, 39(8), 2897. 15 Zhou C, Yang L, Geng H, et al. Ceramics International, 2012, 38(8), 6815. 16 Li Y L, Kroke E, Riedel R, et al. Applied Organometallic Chemistry, 2001, 15(10), 820. 17 Kim K, Ju H, Kim J. Composites Science & Technology, 2017, 141, 1. 18 Liu X L, Ge Z, Zhang W G, et al. High Performance Polymers, 2020, 32(6), 611. 19 Chen S J, Zhang J Q, Su L H. Silicone Material, 2009, 23(4), 246 (in Chinese). 陈少杰, 张教强, 苏力宏. 有机硅材料, 2009, 23(4), 246. 20 Zhu Y X, Li D R, Wu Z G, et al. Journal of Alloys and Compounds, 2021, 860(10), 158434. 21 Wang W, Guo J X, Long C, et al. Journal of Alloys and Compounds, 2015, 637, 106. 22 Ye Y Q, Li X Q, Cheng Z, et al. Vacuum, 2017, 137, 137. 23 An Z G, Zhang J J, Pan S L, et al. The Journal of Physical Chemistry C, 2009, 113(19), 8092. 24 Zhu L P, Bing N C, Wang L L, et al. Dalton Trans, 2012, 41(10), 2959. 25 Zhong L S, Hu J S, Liang H P, et al. Advanced Materials, 2006, 18(18), 2426. 26 Wang L L, Fei T, Lou Z, et al. ACS Applied Materials & Interfaces, 2011, 3(12), 4689. 27 Hao Q Y, Liu S, Yin X M, et al. Solid State Sciences, 2010, 12(12), 2125. 28 Inoue A. Materials Science and Engineering A, 2001, 304(1), 1. 29 Su J B. Preparation and properties of high temperature microwave absor-bing coatings by plasma spraying technology. Ph. D. Thesis, Northwes-tern Polytechnical University, China, 2016 (in Chinese) 苏进步. 等离子喷涂耐高温吸波涂层的制备及性能研究. 博士学位论文, 西北工业大学, 2016. 30 Zhou Y Y. Preparation and properties of microwave absorbing materials with temperature-resistant resin matrix. Ph. D. Thesis, Northwestern Polytechnical University, China, 2016 (in Chinese) 周影影. 耐温树脂基吸波材料的制备及性能研究. 博士学位论文, 西北工业大学, 2016. 31 Zhou L, Zhou W C, Su J B, et al. Applied Surface Science, 2012, 258(7), 2691. 32 Li Y, Cui X, Jin G, et al. Materials and Design, 2017, 123, 54. 33 Wang L R, Wu Y M, Chen X M, et al. Electroplating and Finishing, 2015, 34(22), 1288 (in Chinese). 王莉容, 吴燕明, 陈小明, 等. 电镀与涂饰, 2015, 34(22), 1288. 34 Ochoa-Putman C, Vaidya U K. Composites Part A: Applied Science and Manufacturing, 2011, 42(8), 906.