Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1628-1634    https://doi.org/10.11896/j.issn.1005-023X.2018.10.011
  材料研究 |
CPR/NR和高性能填料对复合摩擦材料力学性能的影响
龚乾江1,2,3,徐 祥1,2,3,杨 明1,2,3,张世伟1,2,3,肖 瑞1,2,3
1 贵州大学材料与冶金学院,贵阳 550025;
2 贵州大学高性能金属结构材料与制造技术国家地方联合工程实验室, 贵阳 550025;
3 贵州大学贵州省材料结构与强度重点实验室, 贵阳 550025
Impact of CPR/NR and High Performance Filler on Tribological Properties of Composite Friction Material
GONG Qianjiang1,2,3,XU Xiang1,2,3, YANG Ming1,2,3, ZHANG Shiwei1,2,3,XIAO Rui1,2,3
1 The Materials Science and Metallurgy Engineering College, Guizhou University, Guiyang 550025;
2 The Key Laboratory for Mechanical Behavior and Microstructure of Materials, Guizhou University, Guiyang 550025;
3 The National &
LocalJoint Engineering Laboratory for High-performance Metal Structure Materials and Advanced Manufacture Technology, Guizhou University, Guiyang 550025
下载:  全 文 ( PDF ) ( 7311KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过干法热压成型工艺制备性能优异的复合摩擦材料,研究了高性能填料以及改性酚醛树脂与丁腈橡胶质量比(CPR/NR)对复合摩擦材料性能的影响规律。对材料的摩擦磨损性能与力学性能进行了测试,借助热分析仪测试其耐热性能,并利用激光共聚焦显微镜、扫描电镜对表面形貌进行了观察和分析。结果表明,复合摩擦材料的密度、压缩强度、压缩模量、硬度随橡胶含量的减少而增加,冲击强度则呈相反的趋势。橡胶含量的减少,树脂比例的增加,使复合摩擦材料的耐热性得到提高,促进了第二接触面的形成,使摩擦系数与磨损率降低。高性能填料含量较低时,材料表面形成大且连续的第二接触面,第二接触面使摩擦系数、比磨损率降低,复合摩擦材料的主要磨损形式为粘着磨损与磨粒磨损;填料含量的增加会阻碍第二接触面的形成,使材料摩擦系数和比磨损率逐渐增大,材料的磨损形式由粘着磨损、磨粒磨损转变为磨粒磨损和疲劳磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚乾江
徐 祥
杨 明
张世伟
肖 瑞
关键词:  复合摩擦材料  高性能填料  实际接触面  摩擦磨损    
Abstract: The high friction composite material was prepared by dry-hot molding process using the high performance filler as main filler. Then the influences of high performance filler and mass ratio of cashew oil modified phenolic resin to nitrile rubber on the properties of composite materials were discussed. The properties of high friction composites material were tested. And the heat resistance performance was analyzed by thermal analyzer. The surface morphology of composites were observed and analyzed by laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The results showed that the density, compressive strength, compressive modulus and hardness of the composites increase with the decrease of the rubber content, which is adverse to the impact strength. The reduction of rubber content facilitate to prompt heat resistance property, secondary contact areas, and to reduce friction coefficient and wear rate. Under a relatively low content of high performance filler, the large and continuous contact plateaus is formed on the surface of the material which causes the decrease of friction coefficient and wear rate were also reduced, and the main wear forms are adhesive wear and abrasive wear. The formation of secondary contact plateaus is hindered while the friction coefficient and specific wear rate gradually increases with the increase of filler content, and the main wear form of material transformed into abrasive and fatigue wear.
Key words:  composite friction material    high performance filler    real contact plateau    friction and wear behavior
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB301  
基金资助: 贵州省工业攻关项目(黔科合GY字(2013)3037)
通讯作者:  徐祥:通信作者,男,1992年生,硕士研究生,主要从事材料制备方面的研究 E-mail:844241662@qq.com 杨明:通信作者,男,副教授,主要从事材料制备与加工方面的研究 E-mail:429428817@qq.com   
作者简介:  龚乾江:男,1990年生,硕士研究生,主要从事材料结构与性能方面的研究 E-mail:1126984821@qq.com
引用本文:    
龚乾江,徐 祥,杨 明,张世伟,肖 瑞. CPR/NR和高性能填料对复合摩擦材料力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1628-1634.
GONG Qianjiang,XU Xiang, YANG Ming, ZHANG Shiwei,XIAO Rui. Impact of CPR/NR and High Performance Filler on Tribological Properties of Composite Friction Material. Materials Reports, 2018, 32(10): 1628-1634.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.011  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1628
1 Sunden B. A theoretical investigation of the effect of freestream turbulence on skin friction and heat transfer for a bluff body[J]. International Journal of Heat and Mass Transfer,1979,22(7):1125.
2 Küükmeroglu T, sentürk E, Kara L, et al. Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy[J]. Journal of Materials Engineering and Performance,2016,25(1):320.
3 Gupta B, Modi A J. Review of automotive brake composite friction materials[J]. International Journal of Advanced Engineering and Research,2015,2(2):218.
4 Han J H, Wu Q S. New type fillers in composite friction material[J]. New Chemical Materials,2011,39(8):47(in Chinese).
韩俊华,吴其胜.复合摩擦材料中的新型填料[J].化工新型材料,2011,39(8):47.
5 Cong P H, Wu X Y, Bu J, et al. Progress in research of organic frictional materials for automobile and train braking[J]. Tribology,2011,31(1):88(in Chinese).
丛培红,吴行阳,卜娟,等.制动用有机复合摩擦材料的研究进展[J].摩擦学学报,2011,31(1):88.
6 Kuo H H, Lin C J H, Ju C P. Tribological behavior of fast-carbo-nized PAN/phenolic-based carbon/carbon composite and method for improving same[J]. Wear,2005,258(10):1555.
7 Peng C, Wang Y, Wang T, et al. Effect of resins on thermal, mechanical and tribological properties of composite friction materials[J]. Tribology International,2015,87(2):1.
8 Zhang B Y, Yao G X. Effect of antifriction filler ZrSiO4 and Al2O3 on friction and wear behavior of brake composite friction material[J]. Fiber Reinforced Plastics/Composites,2013(z2):32(in Chinese).
张宝玉,姚冠新.硬质填料ZrSiO4、Al2O3对制动复合摩擦材料性能的影响[J].玻璃钢/复合材料,2013(z2):32.
9 Gurunath P V, Bijwe J. Friction and wear studies on brake-pad materials based on newly developed resin[J]. Wear,2007,263(7-12):1212.
10 Kolluri D K, Ghosh A K, Bijwe J. Performance evaluation of composite friction materials: Influence of nature and particle size of graphite [J]. Journal of Reinforced Plastics and Composites,2010,29(13):2842.
11 Wang Q, Zhang X, Pei X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites[J]. Materials & Design,2010,31(8):3761.
12 Liu J H, He C X, Liu J, et al. Effects of ratio of boron modified phenolic resin to nitrile butadiene rubber on properties of composite friction materials[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(18):84(in Chinese).
刘军恒,何春霞,刘静,等.硼改性酚醛树脂与丁腈橡胶比例对复合摩擦材料性能的影响[J].农业工程学报,2013,29(18):84.
13 Dang J, Pei D F, He C J. The application of nano-kaolin on the composite brake shoe[J]. Railway Quality Control,2009,37(6):11(in Chinese).
党佳,裴顶峰,贺春江.纳米高岭土在合成闸瓦中的应用[J].铁道技术监督,2009,37(6):11.
14 Fei J, Li H J, Fu Y W, et al. Effect of phenolic resin content on performance of carbon fiber reinforced paper-based composite friction material[J]. Wear,2010,269(7):534.
15 Li B, Zhou J M, Qi L H, et al. Effect of nitrile rubber on properties of cashew-modified phenolic resin-based composite friction materials[J]. Lubrication Engineering,2016,41(2):42(in Chinese).
李勃,周计明,齐乐华,等.丁腈橡胶对腰果壳油改性酚醛树脂基复合摩擦材料性能的影响[J].润滑与密封,2016,41(2):42.
16 Saffar A, Shojaei A. Effect of rubber component on the performance of brake composite friction materials[J]. Wear,2012,274-275:286.
17 Li S J, Tao Y B, Li J, et al. Pyrolysis of PF resin with TG-DSC-FTIR[J]. Journal of Northeast Forestry University,2007,35(6):56(in Chinese).
李淑君,陶毓博,李坚,等.用TG-DSC-FTIR联用技术研究酚醛树脂的热解行为[J].东北林业大学学报,2007,35(6):56.
18 Kumar M, Bijwe J. Optimized selection of metallic fillers for best combination of performance properties of composite friction mate-rials: A comprehensive study[J]. Wear,2013,303(1-2):569.
19 Xiao Y L, Yao P P, Gong T M, et al. Effects of proportion of graphite and MoS2 on performances of space docking composite friction material[J]. The Chinese Journal of Nonferrous Metals,2012,22(9):2539(in Chinese).
肖叶龙,姚萍屏,贡太敏,等.石墨与MoS2配比对空间对接用复合摩擦材料性能的影响[J].中国有色金属学报,2012,22(9):2539.
20 Fei J, Li H J, Qi L H, et al. Effect of graphite content on the friction and wear performance of paper-based composite friction mate-rials[J]. Tribology,2007,27(5):451(in Chinese).
费杰,李贺军,齐乐华,等.石墨含量对纸基复合摩擦材料摩擦磨损性能的影响[J].摩擦学学报,2007,27(5):451.
21 Eriksson M, Jacobson S. Tribological surfaces of organic brake pads[J]. Tribology International,2000,33(12):817.
22 Yang J Y, Wei X C, Hong X L, et al. Dry friction coefficient of high content SiC particle reinforced aluminum matrix composite against commercial composite friction material[J]. Tribology,2014,34(4):446(in Chinese).
杨佼源,韦习成,洪晓露,等.高含量SiC颗粒增强铝基复合材料的增摩特性研究[J].摩擦学学报,2014,34(4):446.
23 ztürk B, ztürk S. Effects of resin type and fiber length on the mechanical and tribological properties of brake composite friction materials[J]. Tribology Letters,2011,42(3):339.
24 Wirth A, Eggleston D, Whitaker R. A fundamental tribochemical study of the third body layer formed during automotive friction braking[J]. Wear,1994,179(1-2):75.
25 Hao T Q, Zhang D K, Chen K, et al. Friction mechanism in dyna-mic slide process of GM-3 friction liner[J]. Tribology,2016,36(2):177(in Chinese).
郝田青,张德坤,陈凯,等.GM-3摩擦衬垫动态滑移过程中的摩擦机理研究[J].摩擦学学报,2016,36(2):177.
26 Wang Q F, Wang H L, Wang Y X, et al. Effect of surface roughness on fretting wear of UHMWPE under different conditions[J]. Tribology,2015,35(4):441(in Chinese).
王秋凤,王鸿灵,王云霞,等.表面粗糙度对UHMWPE微动摩擦磨损性能的影响[J].摩擦学学报,2015,35(4):441.
27 Su D, Luo C, Pan Y J. Wear mechanisms of a resin-based semi-metallic composite friction material for automotive[J]. Materials Science & Engineering of Powder Metallurgy,2007,12(4):221(in Chinese).
苏堤,罗成,潘运娟.树脂基汽车复合复合摩擦材料的磨损机理[J].粉末冶金材料科学与工程,2007,12(4):221.
28 Yin Y F, Liu Y, Ding G, et al. Friction and wear properties of carbon fiber reinforced resin-based composite friction material[J]. Ae-rospace Materials & Technology,2016,46(2):31(in Chinese).
殷艳飞,刘莹,丁郭,等.碳纤维增强树脂基复合摩擦材料摩擦磨损性能[J].宇航材料工艺,2016,46(2):31
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[4] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[5] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[6] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[7] 肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
[8] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[9] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[10] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[11] 吕源远, 岳赟, 杜志浩, 杜三明, 倪锋, 张永振. 不同温度低压真空渗氮对新型TiZr基合金微观组织及摩擦学性能的影响[J]. 材料导报, 2022, 36(17): 21060143-7.
[12] 岳世伟, 逄显娟, 牛一旭, 黄素玲. 载荷和速度对聚醚醚酮(PEEK)复合材料摩擦性能的影响[J]. 材料导报, 2022, 36(16): 21040271-7.
[13] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[14] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[15] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed