Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 158-164    https://doi.org/10.11896/j.issn.1005-023X.2017.09.022
  新材料新技术 |
墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用*
陈燎, 唐兴伟, 周涵, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
Direct Ink Writing, Inkjet Printing and Direct Laser Writing Techniques and Their Applications in Microelectronics
CHEN Liao, TANG Xingwei, ZHOU Han, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 1969KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 直写技术是一种新型微加工技术,其加工过程不需模板并可在亚微米至厘米范围实现材料加工成型。墨水直写、喷墨打印和激光直写作为最常用的直写技术,具有强大的二维、三维成型能力和优异的成型精度,可实现金属、陶瓷、聚合物、水凝胶等复杂构型的程序化构筑,被广泛应用于微电子、组织工程、微流控等领域。阐述了这3种直写技术的构型原理和材料选择,重点介绍了其在微电子器件制造中的应用,讨论了当前研究的难点和热点问题,并对其未来发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈燎
唐兴伟
周涵
范同祥
关键词:  直写技术  微电子制造  电极    
Abstract: Direct writing is one kind of micro-fabrication technologies which can realize materials fabrication and processing in a broad range of size from sub-micrometer to several centimeters without masks. Direct ink writing, inkjet printing and direct laser writing are the most widely used direct writing technologies which enable fast and accurate fabrication of structures with high resolutions. A variety of materials including metals, ceramics, polymers and hydrogels can be processed for the formation of complicated two and three-dimensional architectures by these techniques. Therefore, they are widely used in many different fields such as microelectronics, tissue engineering, microfluidics and so on. In this review, we summarize the materials and principles of the three direct writing techniques, discuss their advantages and disadvantages, and then focus on their applications on microelectronics. An overview of the state-of-art developments in this area is given, the main challenges are discussed and the future trends is predicted.
Key words:  direct writing    microelectronics    electrodes
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TP39  
  TB332  
基金资助: *全国优博作者专项基金(201434); 上海市青年科技启明星计划(15QA1402700)
通讯作者:  范同祥:男,1971年生,博士,教授,博士研究生导师,研究方向为特种功能金属基复合材料和仿生材料 E-mail:txfan@sjtu.edu.cn   
作者简介:  陈燎:男,1991年生,硕士研究生,研究方向为三维直写技术 E-mail:chenliao@sjtu.edu.cn
引用本文:    
陈燎, 唐兴伟, 周涵, 范同祥. 墨水直写、喷墨打印和激光直写技术及其在微电子器件中的应用*[J]. CLDB, 2017, 31(9): 158-164.
CHEN Liao, TANG Xingwei, ZHOU Han, FAN Tongxiang. Direct Ink Writing, Inkjet Printing and Direct Laser Writing Techniques and Their Applications in Microelectronics. Materials Reports, 2017, 31(9): 158-164.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.022  或          https://www.mater-rep.com/CN/Y2017/V31/I9/158
[1] Hon K K B, Li L, Hutchings I M. Direct writing technology—Advances and developments[J]. CIRP Annals—Manuf Technol,2008,57(2):601.
[2] Ambrosi A, Pumera M.3D-printing technologies for electrochemical applications[J]. Chem Soc Rev,2016,45(10): 2740.
[3] Gratson G M, et al.Microperiodic structures: Direct writing of three-dimensional webs[J]. Nature,2004, 428(6981):386.
[4] Arnold C, Sutto T, et al.Direct-write laser processing creates tiny electrochemical systems[J]. Laser Focus World,2004,40(5):S9.
[5] Selimis A, Mironov V, Farsari M.Direct laser writing: Principles and materials for scaffold 3D printing[J]. Microelectron Eng,2015,132:83.
[6] Lewis J A.Direct ink writing of 3D functional materials[J]. Adv Funct Mater,2006,16(17):2193.
[7] Therriault D, White S R, Lewis J A.Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly[J]. Nat Mater,2003,2(4):265.
[8] Smay J E, Cesarano Ⅲ J, Tuttle B A, et al.Piezoelectric properties of 3-X periodic Pb(ZrxTi1-x)O3-polymer composites[J]. J Appl Phys,2002,92(10):6119.
[9] Lous G M, Cornejo I A, McNulty T F, et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics[J]. J Am Ceram Soc,2000,83(1):124.
[10] Duoss E B, Twardowski M, Lewis J A.Sol-gel inks for direct-write assembly of functional oxides[J]. Adv Mater,2007, 19(21):3485.
[11] Barry R A, Shepherd R F, Hanson J N, et al.Direct-write assembly of 3D hydrogel scaffolds for guided cell growth[J]. Adv Mater,2009,21(23):2407.
[12] Attinger D, Zhao Z, et al.An experimental study of molten microdroplet surface deposition and solidification: Transient beha-vior and wetting angle dynamics[J]. J Heat Transfer,2000,122(3):544.
[13] Fromm J.Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM J Res Development,1984, 28(3):322.
[14] Maruo S, Nakamura O, Kawata S.Three-dimensional microfa brication with two-photon-absorbed photopoly merization[J]. Optics Lett,1997,22(2):132.
[15] El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326.
[16] Ahn B Y, Lorang D J, Duoss E B, et al.Direct-write assembly of microperiodic planar and spanning ITO microelectrodes[J]. Chem Commun,2010,46(38):7118.
[17] Nathan-Walleser T, Lazar I-M, Fabritius M, et al.3D micro-extrusion of graphene-based active electrodes: Towards high-rate AC line filtering performance electrochemical capacitors[J]. Adv Funct Mater,2014,24(29):4706.
[18] Zhu C, Han T Y J, et al. Highly compressible 3D pe-riodic graphene aerogel microlattices[J]. Nat Commun,2015,6:6962.
[19] Zhu C, Liu T, Qian F, et al.Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores[J]. Nano Lett,2016,16(6):3448.
[20] Ahn B Y, Duoss E B, Motala M J, et al.Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes[J].Scie-nce,2009,323(5921):1590.
[21] Adams J J, Duoss E B, Malkowski T F, et al.Conformal printing of electrically small antennas on three-dimensional surfaces[J]. Adv Mater,2011,23(11):1335.
[22] Chen P, Fu Y, Aminirad R, et al.Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control[J]. Nano Lett,2011,11(12):5301.
[23] Vatani M, Engeberg E D, Choi J W.Conformal direct-print of piezoresistive polymer/nanocomposites for compliant multi-layer tactile sensors[J]. Additive Manuf,2015,7:73.
[24] Boley J W, White E L, et al.Direct writing of gallium-indium alloy for stretchable electronics[J]. Adv Funct Mater,2014,24:3501.
[25] Sun K, et al.3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater, 2013,25(33):4539.
[26] Fu K, Wang Y, et al.Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Adv Mater,2016,28(13):2587.
[27] Kong Y L, Tamargo I A, Kim H, et al.3D printed quantum dot light-emitting diodes[J]. Nano Lett,2014,14(12): 7017.
[28] Sirringhaus H, Kawase T, et al.High-resolution inkjet printing of all-polymer transistor circuits[J]. Science, 2000,290:2123.
[29] Wang J, Gu J, et al.Low-cost fabrication of submicron all polymer field effect transistors[J]. Appl Phys Lett,2006,88(13):133502.
[30] Sele C W, von Werne T, Friend R H, et al. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution[J]. Adv Mater,2005,17(8):997.
[31] Li J, Zhao Y, Tan H S, et al.A stable solution-processed polymer semiconductor with record high-mobility for printed transistors[J]. Sci Rep,2012,2:754.
[32] Tekin E, Smith P J, Hoeppener S, et al.Inkjet printing of luminescent CdTe nanocrystal-polymer composites[J]. Adv Funct Mater,2007,17(1):23.
[33] Wood V, Panzer M J, Chen J, et al.Inkjet-printed quantum dot-poly-mer composites for full-color AC-driven displays[J]. Adv Mater,2009,21(21):2151.
[34] Gorter H, Coenen M, Slaats M, et al.Toward inkjet printing of small molecule organic light emitting diodes[J]. Thin Solid Films,2013,532:11.
[35] Xu Y, Hennig I, et al.Inkjet-printed energy storage device using graphene/polyaniline inks[J]. J Power Sources,2014,248:483.
[36] Xu B B, et al.Laser patterning of conductive gold micronanostructures from nanodots[J]. Nanoscale,2012,4(22):6955.
[37] Seo B H, Youn J, Shim M.Direct Laser writing of air-stable p-n junctions in graphene[J]. ACS Nano,2014,8(9):8831.
[38] Zhang Y, Guo L, Wei S, et al.Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today,2010,5(1):15.
[39] Gao W, Singh N, Song L, et al.Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nat Nanotechnol,2011,6(8):496.
[40] Zhou Y, Bao Q, et al.Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Adv Mater,2010,22(1):67.
[41] Rapp L, Diallo A K, et al.Pulsed-laser printing of organic thin-film transistors[J]. Appl Phys Lett, 2009,95(17):171109.
[42] Shaw S J, Lippert T, Nagel M, et al.Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer[J]. Appl Phys Lett,2012,100(20):203303.
[43] Nam W, Mitchell J I, et al.Laser direct writing of silicon field effect transistor sensors[J]. Appl Phys Lett,2013,102(9):093504.
[1] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[2] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[3] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[4] 吴菁, 李佳, 黄金华, 宋伟杰, 谭瑞琴. 聚合物分散液晶器件概述、发展趋势及应用研究进展[J]. 材料导报, 2024, 38(21): 23010078-8.
[5] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[6] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[7] 杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
[8] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[9] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[10] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[11] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[12] 寇杰, 马东旭, 郑勇. 基于丝束电极技术的电偶腐蚀研究进展[J]. 材料导报, 2023, 37(23): 22040352-9.
[13] 吴嘉伦, 夏敏, 王军峰, 葛昌纯. 电极感应熔炼气雾化法制备粉末冶金增材制造原材料金属粉末的研究综述[J]. 材料导报, 2023, 37(21): 22040132-8.
[14] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[15] 王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed