Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (8): 56-61    https://doi.org/10.11896/j.issn.1005-023X.2017.08.012
  材料研究 |
富Co-layers硬质合金表面渗氮处理微观结构和性能研究*
弓满锋1, 隋广洲1, 连海山1, 李明圣1, 莫德云1, 陈健2, 伍尚华2
1 岭南师范学院机电工程研究所, 湛江 524048;
2 广东工业大学机电工程学院, 广州 510220
Study on Microstructure and Properties for Co-rich Layers Cemented Carbides by Surface Nitriding Treatment
GONG Manfeng1, SUI Guangzhou1, LIAN Haishan1, LI Mingsheng1, MO Deyun1, CHEN Jian2, WU Shanghua2
1 Institute of Mechatronic Engineering, Lingnan Normal University, Zhanjiang 524048;
2 College of Mechatronic Engineering, Guangdong University of Technology, Guangzhou 510220
下载:  全 文 ( PDF ) ( 1571KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用两步法烧结工艺制备了表面富Co-layers硬质合金和表面富Ti基硬质相层硬质合金,对比研究了氮化处理前后硬质合金表面微观形貌、生成相和力学性能的差异。研究表明:真空条件下烧结可在试样表层生成约20 μm 厚的Co-layers,该层中不含立方碳化物相,微观结构分析发现试样表面呈现山丘形貌且具有金属亮银色光泽,可用于修复试样表面缺陷,如微观裂纹、孔洞等,并且改善硬质合金表面韧性和提高涂层与基体之间的界面结合强度。氮化处理可在合金表面原位生成富含细晶粒的TiN相层,层厚约1 μm,微观结构分析发现该层呈金色或棕色,表面较为平整。通过性能对比分析发现渗氮虽然导致试样密度小幅降低,但是可显著改善晶粒尺寸分布不均和增加表层硬质相中的微应变,能够在提高表面硬度的同时依然保持较高韧性,同时可有效改善硬质合金的刀具耐磨性和使用寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
弓满锋
隋广洲
连海山
李明圣
莫德云
陈健
伍尚华
关键词:  硬质合金  硬质相  渗氮  微观结构  力学性能    
Abstract: The Co-rich layers and Ti-rich hard phase-layers on cemented carbides were prepared by a two-step sintering technology, respectively. The microstructure, sintering phases and mechanical properties of cemented carbides before and after nitriding treatment were studied. The ~20 μm-thick Co-rich layers were obtained on the surface of specimen under vacuum sintering condition, and no cubic carbide phase was contained in the Co-rich layers. The surfaces of specimen appear a kind of hill topography and own bright silver metal luster which were confirmed by microstructure morphology analysis. It can be used to repair the micro-defects, e.g. micro-cracks or micro-holes, on the surface of specimens, improve the toughness of cemented carbides surface, and enhance the interfacial bonding strength between the coating and the substrate. The fine grain ~1 μm-thick Ti-rich hard phase layers could be prepared in situ on the specimen surface by nitridation. The Ti-rich hard phase layers appear gold or brown color and a relatively smooth surface by microstructure analysis. Through comparison and analysis, it could be concluded that though the densities of specimens are decreased as a result of nitridation treatment, but simultaneously some properties can be significantly improved, such as fine grain size distribution and favorable surface micro-strain in the Ti-rich hard phase, which can promote surface hardness with remote toughness loss, and also effectively improve wear resistance and lifetime of cemented carbide tools.
Key words:  cemented carbide    hard phase    nitridation    microstructure    mechanical property
出版日期:  2017-04-25      发布日期:  2018-05-02
ZTFLH:  TG156.8+2  
  TG135+.5  
基金资助: 广东省自然科学基金(S2013010012107);广东省扬帆计划科研创新团队项目(411282606110);岭南师范学院科研创新团队项目;岭南师范学院新材料与先进制造协调创新中心项目
作者简介:  弓满锋:男,1973年生,博士,博士后,副教授,主要研究方向包括硬质合金制备、性能测试及其摩擦磨损失效机理分析,硬质涂层制备技术、性能测试及其残余应力研究,陶瓷机械加工技术及其工艺装备设计,力学及其有限元分析等 Tel:0759-3183184 E-mail:gongmanfeng@163.com
引用本文:    
弓满锋, 隋广洲, 连海山, 李明圣, 莫德云, 陈健, 伍尚华. 富Co-layers硬质合金表面渗氮处理微观结构和性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 56-61.
GONG Manfeng, SUI Guangzhou, LIAN Haishan, LI Mingsheng, MO Deyun, CHEN Jian, WU Shanghua. Study on Microstructure and Properties for Co-rich Layers Cemented Carbides by Surface Nitriding Treatment. Materials Reports, 2017, 31(8): 56-61.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.08.012  或          https://www.mater-rep.com/CN/Y2017/V31/I8/56
1 Kim H C, Kim D K, Woo K D, et al. Consolidation of binderless WC-TiC by high frequency induction heating sintering [J]. Int J Refract Met Hard Mater,2008,26(1):48.
2 Zhang L, Chen S, Cheng X, et al. Effects of cubic carbides and La additions on WC grain morphology, hardness and toughness of WC-Co alloys [J]. Trans Nonferr Met Soc Chin,2012,22(7):1680.
3 Shi L Y, Liu Y M, Huang J H, et al. Growth kinetics of cubic carbide free layers ingraded cemented carbides [J]. Int J Miner Metall Mater,2012,19:64.
4 Shen Z J, Nyg M. Kinetic aspects of superfast consolidation of silicon nitride based ceramics by spark plasma sintering [J]. Mater Chem,2001,11:204.
5 Wang X Q, Xie H F, Guo H L, et al. Sintering of WC-Co powder with nanocrystalline WC by spark plasma sintering [J]. Rare Met,2006,25(3):246.
6 Zhang D M, Fu Z. Mechanism and application of spark plasma sintering technology [J]. J Wuhan Univ Technol,1999,21(6):15.
7 Toshio N, Hideki M, Keiichi T, et al. Material design method for the functionally graded cemented carbide tool [J]. Int Refract Met Hard Mater,1999,17:397.
8 Yang X S, Wan J, Dai C Y, et al. Finite element analysis of crack propagation and fracture mechanical properties of freestanding 8wt% Y2O3-ZrO2 coatings [J]. Surf Coat Technol,2014,221:262.
9 Xiao D H, He Y H, Luo W H, et al. Effect of VC and NbC additions on microstructure and properties of ultrafine WC-10Co cemented carbides [J]. Trans Nonferr Met Soc Chin,2009,19(6):1520.
10 Kagnaya T, Boher C, Lambert L, et al. Micro- structural analysis of wear micromechanisms of WC-6Co cutting tools during high speed dry machining [J]. Int J Refract Met Hard Mater,2014,42:151.
11 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Sintering of WC-10Co nano-powders containing TaC and VC grain growth inhibitors [J]. Trans Nonferr Met Soc Chin,2011,21(5):1080.
12 Kim H C, Shon I J, et al. Rapid sintering of ultrafine WC-Ni cermets [J]. Int J Refract Met Hard Mater,2006,24(6):427.
13 Vander M R, Sacks N. Effect of TaC and TiC on the friction and dry sliding wear of WC-6wt.% Co cemented carbides against steel counterfaces [J]. Int J Refract Met Hard Mater,2013,41:94.
14 Xiong J, Guo Z, Yang M, et al. Tool life and wear of WC-TiC-Co ultrafine cemented carbide during dry cutting of AISI H13 steel [J]. Ceram Int,2013,39(1):337.
15 Correa E O, Santos J N, Klein A N. Microstructure and mechanical properties of WC Ni-Si based cemented carbides developed by powder metallurgy [J]. Int J Refract Met Hard Mater,2010,28(5):572.
16 Rong H, Peng Z, Ren X, et al. Microstructure and mechanical pro-perties of ultrafine WC-Ni-VC- TaC-cBN cemented carbides fabricated by spark plasma sintering [J]. Int J Refract Met Hard Mater,2011,29(6):733.
17 Ren X, Peng Z, et al. Ultrafine binderless WC-based cemented carbides with varied amounts of AlN nano-powder fabricated by spark plasma sintering [J]. Int J Refract Met Hard Mater, 2013,41:308.
18 Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites [J]. J Mater Sci,2010,46(3):571.
19 Guo Z, Xiong J, Yang M, et al. Effect of Mo2C on the microstructure and properties of WC-TiC-Ni cemented carbide [J]. Int J Refract Met Hard Mater,2008,26(6):601.
20 Wittmann B, Schubert W D, Lu B. WC grain growth and grain growth inhibition in nickel and iron binder hardmetals [J]. Intl J Refract Met Hard Mater,2002,20(1):51.
21 Mahmoodan M, Aliakbarzadeh H, Gholamipour R. Sintering of WC-10Co nano powders containing TaC and VC grain growth inhibitors [J]. Trans Nonferr Met Soc Chin,2011,21(5):1080.22 Zheng D, Li X, Ai X, et al. Bulk WC-Al2O3 composites prepared by spark plasma sintering [J]. Int J Refract Met Hard Mater,2012,30(1):51.
23 Malek O, Lauwers B, Perez Y, et al. Processing of ultrafine ZrO2 toughened WC composites [J]. J Eur Ceram Soc,2009,29(16):3371.
24 Basu B, Lee J H, Kim D Y. Development of WC-ZrO2 nano-compo-sites by spark plasma sintering [J]. J Am Ceram Soc,2004,87(2):317.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed