Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (3): 136-142    https://doi.org/10.11896/j.issn.1005-023X.2017.03.022
  碳纳米材料 |
化学气相沉积制备大面积高质量石墨烯的研究进展*
石晓东, 王伟, 尹强, 李春静
河北工业大学电子信息工程学院,天津市电子材料与器件重点实验室,天津 300401;
Research Progress of Large-area and High-quality Graphene Prepared by Chemical Vapor Deposition
SHI Xiaodong, WANG Wei, YIN Qiang, LI Chunjing
Tianjin Key Laboratory of Electronic Materials and Device, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401;
下载:  全 文 ( PDF ) ( 1420KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯是由单层碳原子紧密堆积形成的一种碳质新材料,具有优良的电学、光学、热学及力学等性质。在众多的石墨烯制备方法中,化学气相沉积(Chemical vapor deposition, CVD)最有可能实现大面积、高质量石墨烯的可控制备。综述了CVD方法制备大面积、高质量石墨烯的影响因素,包括衬底、碳源及生长条件(气体流量、生长温度、等离子体功率、生长压强、沉积时间、冷却速率等)。最后展望了CVD方法制备石墨烯的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石晓东
王伟
尹强
李春静
关键词:  石墨烯  化学气相沉积  衬底  碳源  生长条件    
Abstract: Graphene, as a new kind of carbonaceous materials, is formed by the close accumulation of a single layer of carbon atoms. It has many unique properties such as electricity, photology, thermology and mechanics. Among all the methods for preparation of graphene, chemical vapor deposition (CVD) is the most likely to achieve controllable preparation of a large-area and high-qua-lity graphene. In this paper, we mainly overview the influence factors of large-area and high-quality graphene prepared by CVD, including substrate, carbon source and growth conditions (gas flow rate, growth temperature, plasma power, growth pressure, deposition time, cooling rate, etc). Finally, the development direction of the preparation of graphene by CVD method is proposed.
Key words:  graphene    chemical vapor deposition    substrate    carbon source    growth conditions
出版日期:  2017-02-10      发布日期:  2018-05-02
ZTFLH:  TB321  
基金资助: *河北省在读研究生创新资助项目(220056);河北省自然科学基金(F2012202075)
作者简介:  石晓东:男,1990年生,硕士研究生,主要研究方向为新型电子材料及器件 E-mail:shixiaodong103@163.com 王伟:通讯作者,男,1976年生,副教授,主要研究方向为半导体器件与物理、电路设计与仿真 E-mail:wangwei@hebut.edu.cn
引用本文:    
石晓东, 王伟, 尹强, 李春静. 化学气相沉积制备大面积高质量石墨烯的研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 136-142.
SHI Xiaodong, WANG Wei, YIN Qiang, LI Chunjing. Research Progress of Large-area and High-quality Graphene Prepared by Chemical Vapor Deposition. Materials Reports, 2017, 31(3): 136-142.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.03.022  或          https://www.mater-rep.com/CN/Y2017/V31/I3/136
1 Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater,2007,6(3):183.
2 Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60.
3 Kim J H, Castro E J, Hwang Y G, et al. Synthesis of few-layer graphene on a Ni substrate by using DC plasma enhanced chemical vapor deposition (PE-CVD)[J]. J Korean Phys Soc,2011,58(1):53.
4 Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and berry′s phase in grapheme[J]. Nature,2005,438(7065):201.
5 Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523.
6 Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer grapheme[J]. Nano Lett,2008,8(3):902.
7 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
8 Damm C, Nacken T J, Peukert W. Quantitative evaluation of delamination of graphite by wet media milling[J]. Carbon,2015,81:284.
9 Oliveira M H, Schumann T, Gargallo-Caballero R, et al. Mono- and few-layer nanocrystalline graphene grown on Al2O3(0001) by mole-cular beam epitaxy[J]. Carbon,2013,56:339.
10 Yang S B, Yu H J, Shen D. Influence of thermal exfoliation tempe-rature on structure and capacitance properties of graphene[J]. Mater Rev: Res,2015,29(5):22(in Chinese).
杨绍斌,于海晶,沈丁.热剥离温度对石墨烯结构及电性能的影响[J]. 材料导报:研究篇,2015,29(5):22.
11 Wang Y C, Zeng X S, Wei J Q, et al. Preparation and structural characterization of chemically reduced graphene films[J]. Mater Rev: Res,2016, 30(1):46(in Chinese).
王艳春,曾效舒,魏嘉麒,等.化学还原石墨烯薄膜的制备及结构表征[J].材料导报:研究篇,2016,30(1):46.
12 Chen X, Zhang L, Chen S. Large area CVD growth of graphene[J]. Synthetic Metals,2015,210:95.
13 Vasic' B, Zurutuza A, Gajic'R. Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene[J]. Carbon,2016,102:304.
14 Tyurnina A V, Okuno H, Pochet P, et al. CVD graphene recrystallization as a new route to tune graphene structure and properties[J]. Carbon,2016,102:499.
15 Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nat Nanotechnol,2010,5(8):574.
16 Liu G S, Wang J H, Wong J, et al. The properties of graphene films under different process parameters by MPCVD[J]. Vacuum Cryogenics,2014,20(6):319(in Chinese).
柳国松,汪建华,翁俊,等.MPCVD工艺参数对石墨烯性能影响的研究[J].真空与低温,2014,20(6):319.
17 Kaindl R, Jakopic G, Resel R, et al. Synthesis of graphene-layer nanosheet coatings by PECVD[J]. Mater Today: Proceed,2015,2(8):4247.
18 Wang H, Wang G, Bao P, et al. Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation[J]. J Am Chem Soc,2012,134(8):3627.
19 Wu Y, Hao Y, Fu M, et al. Effects of thermally-induced changes of Cu grains on domain structure and electrical performance of CVD-grown graphene[J]. Nanoscale,2016,8(2):930.
20 Shi Y G, Wang D, Zhang J C, et al. Study on the growth of graphene by chemical vapor deposition method[J]. J Synthetic Cryst,2014,43(7):1620(in Chinese).
史永贵,王东,张进成,等.化学气相沉积法生长石墨烯的研究[J].人工晶体学报,2014,43(7):1620.
21 Hu B S, Wei Z D, Ago H, et al. Effects of substrate and transfer on CVD-grown graphene over sapphire-induced Cu films[J]. Sci China Chem,2014,57(6):895.
22 Feng W, Zhang J H, Yang L Q. Morphology effect of polished copper on the graphene quality by CVD[J]. J Funct Mater,2015,46(1):1129(in Chinese).
冯伟,张建华,杨连乔.抛光铜衬底表面形貌对CVD制备石墨烯的影响[J].功能材料,2015,46(1):1129.
23 Hsieh Y P, Wang Y W, Ting C C, et al. Effect of catalyst morpho-logy on the quality of CVD grown graphene[J]. J Nanomater,2013,2013(6):3437.
24 Reckinger N, Van Hooijdonk E, Joucken F, et al. Anomalous moiré pattern of graphene investigated by scanning tunneling microscopy: Evidence of graphene growth on oxidized Cu(111)[J]. Nano Res,2014,7(1):154.
25 Zhang Y F, Gao T, Zhang Y, et al. Controlled growth of graphene on metal substrates and STM characterizations for microscopic morphologies[J]. Acta Physico-Chimica Sinica,2012,28(10):2456(in Chinese).
张艳锋,高腾,张玉,等.金属衬底上石墨烯的控制生长和微观形貌的STM表征[J].物理化学学报,2012,28(10):2456.
26 Chen T, Dai L. Macroscopic graphene fibers directly assembled from CVD-grown fiber-shaped hollow graphene tubes[J]. Angew Chem,2015,127(49):15160.
27 Li X, Sun P, Fan L, et al. Multifunctional graphene woven fabrics[J]. Scientific Reports,2012,2:1.
28 Seah C M, Vigolo B, Chai S P, et al. Sequential synthesis of free-standing high quality bilayer graphene from recycled nickel foil[J]. Carbon,2016,96:268.
29 Zhang Y, Gao T, Xie S, et al. Different growth behaviors of am-bient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study[J]. Nano Res,2012,5(6):402.
30 Othman M, Ritikos R, Hafiz S M, et al. Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films[J]. Mater Lett,2015,158:436.
31 McNerny D Q, Viswanath B, Copic D, et al. Direct fabrication of graphene on SiO2 enabled by thin film stress engineering[J]. Scientific Reports,2014,4:5049.
32 Chen C Y, Dai D, Chen G X, et al. Rapid growth of single-layer graphene on the insulating substrates by thermal CVD[J]. Appl Surf Sci,2015,346:41.
33 Hu G X, Tang B. The diffusion and deposition mechanism of the three-dimensional graphene networks prepared by chemical vapor deposition[J]. J Eng Thermophys,2013,34(9):1779(in Chinese).
胡国新,唐波.化学气相沉积制备三维石墨烯的扩散沉积机理[J].工程热物理学报,2013,34(9):1779.
34 Cai W, Liu W, Han J, et al. Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode[J]. Biosensors Bioelectron,2016,80:118.
35 Min B H, Kim D W, Kim K H, et al. Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode[J]. Carbon,2014,80:446.
36 Liu P, Long M S, Li M. Synthesis of large area few-layer graphene through catalysis of Cu-Ni alloy[J]. J Mater Sci Eng,2014,2(5):629(in Chinese).
刘平,龙明生,李铭.铜镍合金催化制备大面积均匀的少层石墨烯[J].材料科学与工程学报,2014,2(5):629.
37 Lee W G, Kim E, Jung J. Fast and simultaneous growth of graphene, intermetallic compounds, and silicate on Cu-Ni alloy foils[J]. Mater Chem Phys,2014,147(3):452.
38 Fu Z, Zhang Y, Yang Z. Growth mechanism and controllable synthesis of graphene on Cu-Ni alloy surface in the initial growth stages[J]. Phys Lett A,2015,379(20):1361.
39 He F, Li K, Xie G, et al. Theoretical insights on the influence of doped Ni in the early stage of graphene growth during the CH4 dissociation on Ni-Cu(111) surface[J]. Appl Catal A,2015,506:1.
40 You J Y, Shen H L, Wu T R, et al. Effect of solid-carbon source temperature on graphene growth by chemical vapor deposition[J]. Chinese J Vacuum Sci Technol,2015,35(1):109(in Chinese).
尤佳毅,沈鸿烈,吴天如,等.固态碳源温度对CVD法生长石墨烯薄膜影响的研究[J]. 真空科学与技术学报,2015,35(1):109.
41 Rao R, Weaver K, Maruyama B. Atmospheric pressure growth and optimization of graphene using liquid-injection chemical vapor deposition[J]. Mater Express,2015,5(6):541.
42 Lisi N, Buonocore F, Dikonimos T, et al. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol[J]. Thin Solid Films,2014,571:139.
43 Ren W J, Zhu Y, Gong T C, et al. Preparation of few-layer graphene with CVD based on ethylene as carbon source[J]. J Funct Mater,2015,46(16):16115(in Chinese).
任文杰,朱永,龚天诚,等.基于乙烯的化学气相沉积法制备少层石墨烯[J].功能材料,2015,46(16):16115.
44 Wassei J K, Mecklenburg M, Torres J A, et al. Chemical vapor deposition of graphene on copper from methane, ethane and propane: Evidence for bilayer selectivity[J]. Small,2012,8(9):1415.
45 Hu B, Jin Y, Guan D, et al. H2-dependent carbon dissolution and diffusion-out in graphene chemical vapor deposition growth[J]. J Phys Chem C,2015,119(42):24124.
46 Jin Y, Hu B, Wei Z, et al. Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil[J]. J Mater Chem A, 2014,2(38):16208.
47 Wang Z G, Chen Y F, Li P J, et al. Effects of methane flux on structural and transport properties of CVD-grown graphene films[J]. Vacuum,2012,86(7):895.
48 Zhang X,Wang L,Xin J, et al. Role of hydrogen in graphene chemi-cal vapor deposition growth on a copper surface[J]. J Am Chem Soc,2014,136(8):3040.
49 Regmi M, Chisholm M F, Eres G. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu[J]. Carbon,2012,50(1):134.
50 Chugh S, Mehta R, Lu N, et al. Comparison of graphene growth on arbitrary non-catalytic substrates using low-temperature PECVD[J]. Carbon,2015,93:393.
51 Munoz R, Gómez-Aleixandre C. Fast and non-catalytic growth of transparent and conductive graphene-like carbon films on glass at low temperature[J]. J Phys D:Appl Phys,2013,47(4):045305.
52 Jafari A, Ghoranneviss M, Hantehzadeh M R, et al. Effect of plasma power on growth of multilayer graphene on copper using plasma enhanced chemical vapour deposition[J]. J Chem Res D: Appl Phys,2016,40(1):40.
53 Ge W, Lv B. Growth of graphene nanostructures on Cu foils[J]. J Mater Sci Eng,2013,31(4):489(in Chinese).
葛雯,吕斌.Cu箔衬底上石墨烯纳米结构制备[J].材料科学与工程学报,2013,31(4):489.
54 Behura S K, Nayak S, Yang Q, et al. Chemical vapor deposited few-layer graphene as an electron field emitter[J]. J Nanosci Nanotech-nol,2016,16(1):287.
55 Gulotty R, Das S, Liu Y, et al. Effect of hydrogen flow during coo-ling phase to achieve uniform and repeatable growth of bilayer graphene on copper foils over large area[J]. Carbon,2014,77:341.
56 Sarno M, Cirillo C, Piscitelli R, et al. A study of the key parameters, including the crucial role of H2 for uniform graphene growth on Ni foil[J]. J Molecular Catal,2013,366:303.
57 Fogarassy Z, Rümmeli M H, Gorantla S, et al. Dominantly epitaxial growth of graphene on Ni(111) substrate [J]. Appl Surf Sci,2014,314:490.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[5] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[9] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[10] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[11] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[12] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[13] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[14] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[15] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed