Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 135-141    https://doi.org/10.11896/j.issn.1005-023X.2017.022.027
  材料研究 |
电场改性水玻璃固化黄土机理研究*
方晟1,2,黄雪峰1,2,张彭成3,周俊鹏1,2,郭楠4
1 后勤工程学院军事土木工程系,重庆 401311;
2 岩土力学与地质环境保护重庆市重点实验室,重庆 401311;
3 后勤工程学院化学与材料工程系,重庆 401311;
4 兰州理工大学土木工程学院,兰州 730500
A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate
FANG Sheng1,2, HUANG Xuefeng1,2, ZHANG Pengcheng3, ZHOU Junpeng1, 2, GUO Nan4
1 Department of Civil Engineering, Logistic Engineering University, Chongqing 401311;
2 Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Chongqing 401311;
3 Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311;
4 School of Civil Engineering,Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用正交和单因素控制实验对电场改性水玻璃加固黄土进行了研究,并通过化学组成、矿物成分和微观结构分析探讨了电场改性水玻璃加固黄土的机理。结果表明:通电电压越高,通电时间越长,改良土体的无侧限抗压强度越大;土体强度随Na2O含量、模数的增长先减小后增大,存在下极值点;X射线衍射图中出现非晶质物相峰群,随着Na2O含量的增加,非晶质先减少后增多,矿物的衍射强度先降低后升高;SEM图像表明随着电压的不断增大,生成的硅酸凝胶逐渐增多,包覆土体颗粒,填充颗粒之间的孔隙,使得骨架颗粒连接紧密,从而使得土体强度增大;BET表面积孔隙分析表明,随着通电电压的升高和通电时间的延长,黄土的小孔隙增多,孔隙体积和表面积增大,孔径分布减小,平均孔径变化不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方晟
黄雪峰
张彭成
周俊鹏
郭楠
关键词:  改性水玻璃  电场  黄土  固化    
Abstract: In this paper, the reinforcing of loess by electricity-modified sodium silicate was studied through the orthogonal test and single factor control experiment. From the aspects of chemical composition, mineral composition and microstructure perspectives, the paper further analyzed and discussed the mechanism of loess reinforced by electricity-modified sodium silicate. The experimental results indicated that the unconfined compressive strength of the reinforced loess was proportional to the voltage and electrifying time; as the content of Na2O and modulus kept increasing, the strength of the reinforced loess firstly decreased, then reached the lowest extreme point before it increased; amorphous phase peak groups appeared in the X-ray diffraction pattern, and as the Na2O content kept increasing, the amorphous phase and the diffraction intensity experienced a fall before a rise; the SEM images suggested that the voltage of sodium silicate can accelerate the generation of silica, which would tighten the particle skeleton and improved the soil strength by covering the soil particles and filling the gaps between particles; the accelerated surface area-porosimetry system (BET) showed that with the increase of the voltage and the electrifying time, the small pores, pore volume and pore surface area were augmented while the scale of pore size was narrowed, and the average pore size remained hardly changed.
Key words:  modified sodium silicate    electricity    loess    reinforcing
发布日期:  2018-05-08
ZTFLH:  TU472.5  
基金资助: *国家科技支撑计划项目(2013BAJ06B00)
通讯作者:  黄雪峰,男,1960年生,教授,博士研究生导师,主要从事非饱和土与特殊土地基处理研究E-mail:hxfen60@163.com   
作者简介:  方晟:男,1992年生,硕士研究生,主要从事非饱和土与特殊土地基处理研究E-mail:522061911@qq.com
引用本文:    
方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate. Materials Reports, 2017, 31(22): 135-141.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.027  或          https://www.mater-rep.com/CN/Y2017/V31/I22/135
1 Cheng Jianji. The application of double liquefied silicide method in the buried underground cavity reinforcement engineering[J]. Chin J Rock Mech Eng,1997,16(1):78(in Chinese).
程鉴基.双液化学硅化法在埋藏型地下溶洞加固工程中的应用[J].岩石力学与工程学报,1997,16(1): 78.
2 Luo Yusheng. The foundation reinforcement in the collapsible loess region using the single fluid silicide method[J]. Shanxi Construction, 2006(7):26(in Chinese).
罗宇生.单液硅化加固湿陷性黄土地基[J].陕西建筑, 2006(7):26.
3 Lv Qingfeng, Wu Zhumin, Wang Shengxin, et al. Mechanism of temperature-modification silicification grouted loess[J]. Rock Soil Mech,2013,34(5):1293(in Chinese).
吕擎峰,吴朱敏,王生新,等.温度改性水玻璃固化黄土机制研究[J].岩土力学,2013,34(5):1293.
4 Ikeda K, Feng D, Mikltni Akira. Recent development of geopolymer technique[J]. Earth Sci Frontiers,2005,12(1):206.
5 Xiao Zunqun, Liu Baochen, Qiao Shifan, et al. Experimental research on new grouting materials of acidic water glass-calcium carbonate[J]. Rock Soil Mech,2010,31(9):2829(in Chinese).
肖尊群,刘宝琛,乔世范,等.新型酸性水玻璃-碳酸钙注浆材料试验研究[J].岩土力学,2010,31(9):2829.
6 Li Xue, Zhao Hailei, Li Xingwang, et al. Characteristics of gelation process of H2SO4waterglass system[J]. J Chem Ind Eng,2007,58(2):501(in Chinese).
李雪,赵海雷,李兴旺,等.硫酸水玻璃体系的成胶特点[J].化工学报,2007,58(2):501.
7 Yin Yaxiong, Wang Shengxin, Han Wenfeng, et al. Study on microstructure of CO2-silicification grouted loess[J]. Rock Soil Mech,2008,29(6):1629(in Chinese).
尹亚雄,王生新,韩文峰,等.加气硅化黄土的微结构研究[J].岩土力学,2008,29(6):1629.
8 Rzhanitsyn B A, Sokolovich V E, Ibragimov M N. Experience in chemical grouting of loose carbonate soils with summisoil and carbamide resin[J]. Soil Mech Foundation Eng, 1969,6(4):257.
9 Hu Liming, Wu Weiling, Wu Hui, et al. Theoretical analysis and numerical simulation of electroosmosis consolidation for soft clay[J]. Rock Soil Mech,2010,31(12):3977(in Chinese).
胡黎明,吴伟令,吴辉,等.软土地基电渗固结理论分析与数值模拟[J].岩土力学,2010,31(12):3977.
10 Hong Heqing, Hu Liming, Glend Inning Stephanie, et al. Electroo-smosis experiment of soft clay with external loading[J]. J Tsinghua University(Sci Technol),2009,49(6):825(in Chinese).
洪何清,胡黎明,Glend Inning Stephanie,等.外荷载作用下的软黏土电渗试验[J]. 清华大学学报(自然科学版),2009,49(6):825.
11 Wang Ningwei, Bai Xiaohang, Han Jianhui, et al. Field test of electrochemical modification of soft silty clay[J]. Geotechuical Luvestigatiou Surveying,2014(12):14(in Chinese).
王宁伟,白小航,韩舰辉,等.淤泥质粉质黏土电化学改性加固现场试验[J].工程勘察,2014(12):14.
12 Burnotte F, Lefebvre G, Grondin G. A case record of electroosmotic consolidation of soft clay with improved soil electrode contact[J]. Canadian Geotechnicall J,2004,41(6):1038.
13 Yang Xiaohua, Yu Yonghua. Application of cement-silicate double solution grouting in loesstunnel construction[J]. China J Highway Transport, 2004,17(2):68(in Chinese).
杨晓华 ,俞永华. 水泥-水玻璃双液注浆在黄土隧道施工中的应用[J]. 中国公路学报,2004,17(2):68.
14 Wang Shengxin, Lu Qingfeng, Wang Dekai, et al. Experimental study of clay minerals solidified by sodium silicate[J]. J Central South University(Sci Technol),2013,44(7):2656(in Chinese).
王生新,吕擎峰,王得楷,等.水玻璃固化黏土矿物的试验研究[J].中南大学学报(自然科学版),2013,44(7):2656.
15 Xiao Zunqun, Liu Baochen, Qiao Shifan, et al. Calcium carbonic acid-acid water glass grouting material and comparing test[J]. J Central South University(Sci Technol),2010,41(6):2306(in Chinese).
肖尊群,刘宝琛,乔世范,等.碳酸钙-酸性水玻璃注浆材料对比试验[J].中南大学学报(自然科学版),2010,41(6):2306.
[1] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[2] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[3] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[4] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[7] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[8] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[9] 姚志华, 张建华, 辛建平, 穆锐. 风积砂-黄土混合料与钢界面的环形剪切力学特性[J]. 材料导报, 2024, 38(5): 23070012-8.
[10] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[11] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[12] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[13] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[14] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[15] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed