Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 150-154    https://doi.org/10.11896/j.issn.1005-023X.2017.018.030
  计算模拟 |
碳纤维复合材料假脚冲击后疲劳性能影响因素分析*
崔海坡, 张梦雪, 张阿龙
上海理工大学教育部微创医疗器械工程中心,上海 200093
Influencing Factors Analysis for Fatigue Property of Carbon Fiber Composites Prosthetic Foot after Impact
CUI Haipo, ZHANG Mengxue, ZHANG Along
Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093
下载:  全 文 ( PDF ) ( 1593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于三维逐渐损伤理论和有限元法,对碳纤维复合材料假脚在冲击载荷及冲击后疲劳载荷作用下的破坏过程进行分析,研究了不同冲击能量、不同冲头材料、不同应力水平等因素对碳纤维假脚的冲击损伤及疲劳性能的影响规律。结果表明,在冲击载荷作用下,碳纤维复合材料假脚的损伤模式主要为基体开裂、纤维压缩和分层。随着冲击能量的增加,上述3种破坏模式的损伤单元数逐渐增大;尽管随着冲击能量的增加,碳纤维复合材料假脚的疲劳循环次数逐渐降低,但二者之间并不满足线性关系,即存在冲击能门槛值。对于碳纤维复合材料假脚而言,其冲击能门槛值为7 J;冲头材料越硬,碳纤维复合材料结构件的冲击损伤面积越大,疲劳性能下降越剧烈;碳纤维复合材料假脚的疲劳循环次数随着加载应力的增加而显著降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔海坡
张梦雪
张阿龙
关键词:  假脚  碳纤维复合材料  疲劳性能  冲击损伤    
Abstract: The damage process of carbon fiber composites prosthetic foot under the impact loading and fatigue loading after impact were analyzed based on the 3D progressive damage theory and finite element method. The influence of impact energy, impact tup material and stress level on the impact damage and fatigue property of prosthetic foot were researched. The results showed that the main damage modes of carbon fiber composites prosthetic foot under the impact loading were matrix cracking, fiber crushing and delamination. The damage area of these damage modes increased with the increasing impact energy. Although the fatigue life cycle gradually decreased with the increasing impact energy, there was no linear relationship between them, which meant that there was a impact energy threshold. For carbon fiber composites prosthetic foot, the threshold was 7 J. With the enhancement of the hardness of impact tup, the impact damage area increased and fatigue property decreased wildly. The fatigue life cycle of carbon fiber compo-sites prosthetic foot decreased rapidly with the increasing stress level.
Key words:  prosthetic foot    carbon fiber composites    fatigue property    impact damage
出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51305268);上海工程技术研究中心资助项目(15DZ2251700)
作者简介:  崔海坡:男,1978年生,博士,副教授,主要研究方向为材料设计、分析与应用 E-mail:h_b_cui@163.com
引用本文:    
崔海坡, 张梦雪, 张阿龙. 碳纤维复合材料假脚冲击后疲劳性能影响因素分析*[J]. 《材料导报》期刊社, 2017, 31(18): 150-154.
CUI Haipo, ZHANG Mengxue, ZHANG Along. Influencing Factors Analysis for Fatigue Property of Carbon Fiber Composites Prosthetic Foot after Impact. Materials Reports, 2017, 31(18): 150-154.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.030  或          https://www.mater-rep.com/CN/Y2017/V31/I18/150
1 Liu Jinsong, Liu Zhiquan. Application of modern polymer materials in the area of prosthetics and orthotics[J]. Chinese J Rehabilitation Theory Practice, 2004,10(10):634(in Chinese).
刘劲松, 刘志泉. 现代高分子材料在假肢矫形技术领域中的应用[J]. 中国康复理论与实践, 2004,10(10):634.
2 Rikard B, Nilsson L, Simonsson K, et al. Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model[J]. Compos Sci Technol, 2011,64(2):279.
3 Schmidt F, Rheinfurth M, Protz R, et al. Monitoring of multiaxial fatigue damage evolution in impacted composite tubes using non-destructive evaluation[J]. Composites: Part A, 2012,43:537.
4 Shi W J, Hu W P, Zhang M, et al. A damage mechanics model for fatigue life prediction of fiber reinforced polymer composite lamina[J]. Acta Mechanica Solida Sinica, 2011,5(24):399.
5 Zhu Weiyao, Xu Xiwu. Experiment research on residual compressive strength and fatigue performance of composite laminates with low velocity impact damage[J]. Acta Materiae Compositae Sinica, 2012,29(5):171(in Chinese).
朱炜垚, 许希武. 含低速冲击损伤复合材料层合板剩余压缩强度及疲劳性能试验研究[J]. 复合材料学报, 2012,29(5):171.
6 Koo J M, Choi J H, Seok C S. Evaluation for residual strength and fatigue characteristics after impact in CFRP composites[J]. Compo-site Structures, 2013,105:58.
7 Koo J M, Choi J H, Seok C S. Prediction of post-impact residual strength and fatigue characteristics after impact of CFRP composite structures[J]. Composites: Part B, 2014,61:300.
8 Uyaner M, Kara M, Sahin A. Fatigue behavior of filament wound E-glass/epoxy composite tubes damaged by low velocity impact[J]. Composites: Part B, 2014,61:358.
9 Tarpani J R, Canto R B, Saracura R G M, et al. Compression after impact and fatigue of reconsolidated fiber-reinforced thermoplastic matrix solid composite laminate[J]. Procedia Mater Sci, 2014,3:485.
10崔海坡, 赵改平, 黄晶晶, 等. 碳纤维双弹全地形假脚脚板. 中国, 200810200227.5[P]. 2011-11-09.
11Hou J P, Petrinic N, Ruiz C, et al. Prediction of impact damage in composite plates[J]. Compos Sci Technol, 2000,60:273.
12Tserpes K I, Labeas G, Papanikos P, et al. Stength prediction of bolted joints in graphite/epoxy composite laminates[J]. Compo-sites: Part B, 2002,33:521.
13Shokrieh M M, Lessard L B. Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—Ⅰ: Modelling[J]. Int J Fatigue, 1997,19(3):201.
14Shokrieh M M, Lessard L B. Progressive fatigue damage modeling of composite materials, Part Ⅰ: Modeling[J]. J Compos Mater,2000,34(13):1056.
[1] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[2] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[3] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[4] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[5] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[6] 潘星辰, 郜红合, 陈旭辉, 朱子兴. 乘用车座椅材料加工工艺与结构设计[J]. 材料导报, 2023, 37(22): 22090290-7.
[7] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[8] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[9] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[10] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[11] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[12] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[13] 刘扬, 曾丹, 曹磊, 王达. 钢-UHPC组合结构桥梁研究进展[J]. 材料导报, 2021, 35(3): 3104-3113.
[14] 付磊, 林莉, 罗云蓉, 谢文玲, 王清远, 李辉. 梯度纳米结构材料疲劳性能研究进展[J]. 材料导报, 2021, 35(3): 3114-3121.
[15] 李款, 解建光, 潘友强, 张辉. 基于活性增韧剂改善冷拌环氧混合料路用性能[J]. 材料导报, 2021, 35(22): 22200-22205.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed