Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 36-40    https://doi.org/10.11896/j.issn.1005-023X.2017.016.008
  材料研究 |
CaO-Al2O3二元氧化物吸附剂的制备、表征及除氟性能研究*
许乃才1,2, 史丹丹3, 党力2, 洪天增2, 董亚萍2, 刘忠2, 李武2
1 青海师范大学化学系, 西宁 810008;
2 中国科学院青海盐湖研究所, 西宁 810008;
3 青海省科学技术信息研究所,西宁 810008
Preparation, Characterization and Fluoride Adsorption of a CaO-Al2O3 Binary Oxide Adsorbent
XU Naicai1,2, SHI Dandan3, DANG Li2, HONG Tianzeng2, DONG Yaping2, LIU Zhong2, LI Wu2
1 Department of Chemistry, Qinghai Normal University, Xining 810008;
2 Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008;
3 Institute of Science and Technology Information of Qinghai Province, Xining 810008
下载:  全 文 ( PDF ) ( 1704KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以δ-Al2O3为前驱体,用浸渍及高温焙烧技术制备了结构新颖的CaO-Al2O3二元复合氧化物吸附剂。用XRD、SEM、FT-IR、TG及BET等手段对产物的晶型、形貌、热稳定性及孔结构等进行了表征。同时,研究了pH值及吸附时间对CaO-Al2O3除氟率的影响。结果表明,δ-Al2O3及CaO-Al2O3均为纳米颗粒形貌,具有介孔结构,比表面积分别为167.8 m2/g和72.3 m2/g;在pH=8.0时,CaO-Al2O3的除氟效果最佳,当吸附时间超过220 min时,CaO-Al2O3的除氟效率明显高于δ-Al2O3,且在480 min时F的去除率达65.42%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许乃才
史丹丹
党力
洪天增
董亚萍
刘忠
李武
关键词:  氧化钙-氧化铝  介孔  吸附  动力学  含氟废水    
Abstract: A novel binary oxide adsorbent of CaO-Al2O3 was successfully prepared via impregnation technology followed by calcination procedure with δ-Al2O3 as a precursor. The adsorbent was thoroughly characterized by XRD, SEM, FT-IR, TG and BET technics in order to investigate its crystalline, morphology, thermal stability and structural properties. At the same time, the effects of pH and adsorption time on the fluoride removal were thoroughly studied by a batch of adsorption experiments. The experimental results indicated that both δ-Al2O3 and CaO-Al2O3 present nano-sized particle morphology with mesoporous structure. The specific BET surface areas of δ-Al2O3 and CaO-Al2O3 were 167.8 m2/g and 72.3 m2/g, respectively. The optimal pH value for fluoride removal by CaO-Al2O3 was about 8.0. Adsorption capacity of CaO-Al2O3 was higher than Al2O3 when the adsorption time exceeded 220 min, and the fluoride removal rate reached 65.42% when the adsorption time was 480 min.
Key words:  calcium oxide-aluminun oxide    mesoporous structure    adsorption    kinetics    fluorine-containing waste water
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51302280;51574186)
通讯作者:  李武:通讯作者,男,1966年生,博士,研究员,主要研究方向为盐湖卤水综合利用 E-mail:liwu2016@126.com   
作者简介:  许乃才:男,1984年生,博士研究生,讲师,主要研究方向为无机功能材料的制备及应用 E-mail:xunc@qhnu.edu.cn 刘忠:男,1981年生,博士,副研究员,主要研究方向为无机功能材料的设计、合成及结晶动力学 E-mail:liuzhong@isl.ac.cn
引用本文:    
许乃才, 史丹丹, 党力, 洪天增, 董亚萍, 刘忠, 李武. CaO-Al2O3二元氧化物吸附剂的制备、表征及除氟性能研究*[J]. 《材料导报》期刊社, 2017, 31(16): 36-40.
XU Naicai, SHI Dandan, DANG Li, HONG Tianzeng, DONG Yaping, LIU Zhong, LI Wu. Preparation, Characterization and Fluoride Adsorption of a CaO-Al2O3 Binary Oxide Adsorbent. Materials Reports, 2017, 31(16): 36-40.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.008  或          https://www.mater-rep.com/CN/Y2017/V31/I16/36
1 Srimurali M, Pragathi A,Karthikeyan J.A study on removal of fluo-rides from drinking water by adsorption onto low-cost materials[J]. Environ Pollut,1998,99:285.
2 World Health Organization (WHO). Chemical fact sheets: Fluoride. Guidelines for drinking water quality: Incorporation first addendum[R]. Geneva: World Health Organization,2006.
3 Harrison P T C. Fluoride in water: A UK perspective[J]. J Fluorine Chem,2005,126:1448.
4 Fan X, Parker D, Smith M. Adsorption kinetics of fluoride on low cost materials[J]. Water Res,2003,37:4929.
5 Ghorai S, Pant K K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Sep Purif Tech-nol,2005,42:265.
6 Turner B D, Binning P, Stipp S L S. Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption[J]. Environ Sci Technol,2005,39:9561.
7 Mohapatra D, Mishra D, Mishra S P, et al.Use of oxide minerals to abate fluoride from water[J]. J Colloid Interface Sci,2004,275:355.
8 Tor A. Removal of fluoride from an aqueous solution by using montmorillonite[J]. Desalination,2006,201:267.
9 Daifullah A A M, et al. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw[J]. J Hazard Mater,2007,147:633.
10 Sun Y, Fang Q, Dong J, et al. Removal of fluoride from drinking water by natural stilbite zeolite modified with Fe(Ⅲ) [J]. Desalination,2011,277:121.
11 Lv L, He J, Wei M, et al. Treatment of high fluoride concentration water by MgAl-CO3 layered double hydroxides: Kinetic and equilibrium studies[J]. Water Res,2007,41:1534.
12 Biswas K, et al. Adsorption kinetics of fluoride on iron(Ⅲ)-zirconium(Ⅳ) hybrid oxide[J]. Adsorption,2007,13:83.
13 Yu Y, Yu L, Chen J P. Adsorption of fluoride by Fe-Mg-La triple-metal composite: Adsorbent preparation, illustration of performance and study of mechanisms[J]. Chem Eng J,2015,262:839.
14 Xiang W, Zhang G, Zhang Y, et al. Synthesis and characterization of cotton-like Ca-Al-La composite as an adsorbent for fluoride remo-val[J]. Chem Eng J,2014,250:423.
15 Rodríguez-García C E, Perea-López N, Hirata G A. Near UV-blue excitable green-emitting nanocrystalline oxide[J]. Adv Mater Sci Eng,2011,2011:790517.
16 Ji G J, Li M M, Li G H, et al. Hydrothermal synthesis of hierarchical micron flower-like γ-AlOOH and γ-Al2O3 superstructures from oil shale ash[J]. Powder Technol,2012,215-216:54.
17 Horikawa T, Do D D, Nicholson D. Capillary condensation of adsorbents in porous materials[J]. Adv Colloid Interface Sci,2011,169:40.
18 Wu W, Wan Z J, Chen W, et al. Synthesis of mesoporous alumina with tunable structural properties[J]. Microporous Mesoporous Mater,2015,217:12.
19 Xu N, Liu Z, Bian S, et al. Template-free synthesis of mesoporous γ-alumina with tunable structural properties[J]. Ceram Int,2016,42(3):4072.
20 Zeng Xiaopin, Wu Bing, Jiang Shan, et al. The analysis for the calcium carbonate at high temperatures [J]. Guangdong Chem Ind,2010, 37(5):70(in Chinese).
曾小平,吴冰,江山,等. 碳酸钙在高温条件下的变化过程分析[J]. 广东化工,2010,37(5):70.
21 Nie Miaojie, Zhu Yizheng, Liu Senlin, et al. Preparation of alumina ceramic membrane by phase-inversion method [J]. J Donghua University(Nat Sci),2013,39(1):16.(in Chinese).
聂淼杰,朱轶铮,刘森林,等. 相转化法制备氧化铝陶瓷膜[J]. 东华大学学报(自然科学版),2013,39(1):16.
22 Jin H Y, Ji Z J, Yuan J, et al. Research on removal of fluoride in aqueous solution by alumina-modified expanded graphite composite[J]. J Alloy Compd,2015,620:361.
23 Maliyekkal S M, Shukla S, Philip L, et al. Enhanced fluoride removal from drinking water by magnesia-amended activated alumina granules[J]. Chem Eng J,2008,140:183.
24 Swain S K, Patnaik T, Patnaik P C, et al. Development of new alginate entrapped Fe(Ⅲ)-Zr(Ⅳ) binary mixed oxide for removal of fluoride fromwater bodies[J]. Chem Eng J,2013,215:763.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[3] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[4] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[5] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[6] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[7] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[8] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[9] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[10] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[11] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[12] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[13] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[14] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[15] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed