Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 78-84    https://doi.org/10.11896/j.issn.1005-023X.2017.013.010
  材料综述 |
超超临界机组用Sanicro25耐热钢研究进展*
朱传志1,2, 袁勇1, 尹宏飞1, 党莹樱1, 赵新宝1, 游才印2
1 西安热工研究院有限公司,西安 710032;
2 西安理工大学材料科学与工程学院,西安 710048
Research Progress of Austenitic Heat Resistant Steel Sanicro25 Used in Ultra Supercritical Unit
ZHU Chuanzhi1,2,YUAN Yong1,YIN Hongfei1,DANG Yingying1,ZHAO Xinbao1,YOU Caiyin2
1 Xi’an Thermal Power Research Institute Co. Ltd., Xi’an 710032;
2 School of Materials Science and Technology, Xi’an University of Technology, Xi’an 710048
下载:  全 文 ( PDF ) ( 1801KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 简要介绍了一种700 ℃超超临界发电机组再热器和过热器的候选材料——Sanicro25奥氏体耐热钢。通过对Sanicro25组织结构、时效组织演变等微观组织,高温性能、持久强度、冲击韧性、低周疲劳强度和焊接性能等力学性能及耐蚀性研究进展的综述,指出了目前Sanicro25时效后冲击韧性大幅下降的不足,并且展望了未来Sanicro25的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱传志
袁勇
尹宏飞
党莹樱
赵新宝
游才印
关键词:  Sanicro25  超超临界机组  微观组织  力学性能    
Abstract: Austenitic heat resistant steel Sanicro25 is a promising candidate for applications of super-heaters and re-heaters in 700 ℃ advanced ultra-supercritical power plants. This review briefly describes the chemical composition, microstructure and its evolution, mechanical properties, welding properties, steam oxidation and corrosion resistance of Sanicro25. The impact toughness of Sanicro25 decreases dramatically during long term thermal exposure, which may affect the safety of power plants. The future research directions on the performance improvement of the Sanicro25 are discussed.
Key words:  Sanicro25    advanced ultra-supercritical    microstructure    mechanical properties
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG142.1  
基金资助: *华能国际电力股份有限公司科技项目(ZD-15-HJK02)
通讯作者:  袁勇:通讯作者,男,1973年生,研究员,主要从事超超临界电站高温合金的开发 E-mail:masyy@163.com   
作者简介:  朱传志:男,1991年生,硕士研究生,主要从事超超临界电站高温合金的研究
引用本文:    
朱传志, 袁勇, 尹宏飞, 党莹樱, 赵新宝, 游才印. 超超临界机组用Sanicro25耐热钢研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 78-84.
ZHU Chuanzhi,YUAN Yong,YIN Hongfei,DANG Yingying,ZHAO Xinbao,YOU Caiyin. Research Progress of Austenitic Heat Resistant Steel Sanicro25 Used in Ultra Supercritical Unit. Materials Reports, 2017, 31(13): 78-84.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.010  或          https://www.mater-rep.com/CN/Y2017/V31/I13/78
1 Viswanathan R, Bakker W. Materials for ultra supercritical coal power plants-Boiler materials: Part 1[J]. J Mater Eng Perform,2015,10(1):81.
2 Li Fusheng. Countermeasures for material nationalization of USC units[J]. Chin J Power Eng,2004,24(3):311(in Chinese).
林富生. 超超临界参数机组材料国产化对策[J]. 动力工程学报,2004,24(3):311.
3 Mao Xueping, Wang Gang, Ma Zhiyong. The development of materials of supercritical units or ultra supercritical units[J]. Modern Electric Power,2005,22(1):69(in Chinese).
毛雪平, 王罡, 马志勇. 超超临界机组汽轮机材料发展状况[J]. 现代电力,2005,22(1):69.
4 Viswanathan R, Henry J F, Tanzosh J, et al. US program on materials technology for ultra-supercritical coal power plants[J]. J Mater Eng Perform,2005,14(3):281.
5 Zhou Rongcan, Fan Changxin. Material research and material selection analysis of ultra supercritical thermal power unit[J]. China Electric Power,2005,38(8):41(in Chinese).
周荣灿, 范长信. 超超临界火电机组材料研究及选材分析[J]. 中国电力,2005,38(8):41.
6 Zhao Zhongping, Yao Mingfang. Exploring on development ultra-supercritical pressure power generation units-development of USC units in China as viewed from the materials[J].Chin J Power Eng,2000,20(2):640(in Chinese).
赵中平, 姚珉芳. 超级超临界机组开发探讨——从材料的成就看我国超级超临界机组的发展[J]. 动力工程学报,2000,20(2):640.
7 Viswanathan R, Coleman K, Rao U. Materials for ultra-supercritical coal-fired power plant boilers[J]. Int J Pressure Vessels Piping,2006,83(11-12):778.
8 Gong X F, Yang G X, Fan H, et al. Materials for ultra-supercritical steam turbines operating at the steam temperature above 600 ℃[J]. Dongfang Electric Rev,2011,25(97):7(in Chinese).
巩秀芳,杨功显,范华,等.600 ℃以上超超临界汽轮机组用材[J].东方电气评论,2011,25(97):7.
9 Zhao Chengzhi, Wei Shuangsheng, Gao Yalong, et al. Progress of heat-resistant steel for supercritical and ultra-supercritical steam turbine[J].J Iron Steel Res,2007,19(9):1(in Chinese).
赵成志, 魏双胜, 高亚龙,等. 超临界与超超临界汽轮机耐热钢的研究进展[J]. 钢铁研究学报,2007, 19(9):1.
10 Viswanathan R, Purgert R, Goodstine S, et al. US program on materials technology for ultrasupercritical coal-fired boilers[C]// International Conference on Advances in Materials Technology for Fossil Power Plants.2008.
11 Lin Fusheng, Xie Xishan, Zhao Shuangqun, et al. Selection of super alloys for super-heater tubes of domestic 700 ℃ A-USC boilers[J].Chin J Soc Power Eng,2011,31(12):960(in Chinese).
林富生, 谢锡善, 赵双群,等. 我国700 ℃超超临界锅炉过热器管用高温合金选材探讨[J]. 动力工程学报, 2011,31(12):960.
12 Zhang Yanping, Cai Xiaoyan, Huang Shuhong. Research and deve-lopment status of materials for ultra supercritical coal-fired generating units at 700 ℃[J]. Electric Power,2012,45(2):16(in Chinese).
张燕平, 蔡小燕, 黄树红. 700 ℃超超临界燃煤发电机组材料研发现状[J]. 中国电力,2012,45(2):16.
13 杨富. 完善600 ℃、开发700 ℃超超临界机组用国产新型耐热钢[C]// 电站金属材料学术年会.2011.
14 Zhong Z H, Gu Y F, Yuan Y, et al. A new wrought Ni-Fe-base superalloy for advanced ultra-supercritical power plant applications beyond 700 ℃ [J]. Mater Lett,2013,109:38.
15 Zhao Xinbao, Dang Yingying, Yin Hongfei, et al. Effect of heat treatment on the microstructure of a Ni-Fe based superalloy for advanced ultra-supercritical power plant applications[J]. Progress Nat Sci: Mater Int,2016,26:204.
16 Nameless. Sandvik material technology company Sandvik Sanicro25 steel[J].China Stainless,2009(2):44(in Chinese).
佚名. Sandvik材料技术公司的Sandvik Sanicro25钢[J]. 不锈,2009(2):44.
17 Rautio R, Bruce S. Alloy for ultrasupercritical coal fired boilers[J]. Adv Mater Processes,2008,166(4):35.
18 Ha V T, Jung W S. Evolution of precipitate phases during long-term isothermal aging at 1083 K (810 ℃) in a new precipitation-streng-thened heat-resistant austenitic stainless steel[J]. Metall Mater Trans Part A,2012, 43(43):3366.
19 Farooq M, Sandström R, Tassa O. Precipitation hardening and other contributions to the creep strength of an 23Cr25NiWCuCo austenitic stainless steel[J]. Mater Technol,2013.
20 Intiso L, Johansson L G, Halvarsson M. Oxidation behaviour of Sanicro 25 in CO2 and H2O-rich environments[J]. Electrochem Soc,2012,77:209.
21 侯淑芳, 张周博. 时效温度和时效时间对Sanicro25组织性能的影响[C]// 中国电机工程学会金属材料专委会学术年会.2015.
22 Zhang Xian. Properties of austenitic heat-resistant steel Sanicro25 for ultra-supercritical boilers[J].Power Equipment,2015,29(6):439(in Chinese).
张显. 超超临界锅炉用奥氏体耐热钢Sanicro25的性能[J]. 发电设备,2015,29(6):439.
23 Zhao B, Bao H S, Li L. Hot deformation behavior of Sanicro25 steel[J]. Hot Work Technol,2014,43(10):26(in Chinese).
赵博,包汉生,李莉.Sanicro25钢热变形行为的研究[J].热加工工艺,2014,43(10):26.
24 Lai Xianhong, Yang Hongying.The performance of Sanicro25 austenitic heat resistant steel pipe [J]. Eastern Boiler,2012(4):28(in Chinese).
赖仙红, 杨红英. Sanicro25奥氏体耐热钢管性能简述[J]. 东方锅炉,2012(4):28.
25 García F L, Chyrkin A, Hüttel T, et al. Oxide scale formation and subsurface phase transformations during long-term steam exposure of the cobalt base alloy 25[J]. Mater Corros,2012,63(10):878.
26 Zhao B, Bao H S, Liu Z D, et al. Thermodynamic calculation and analysis on precipitated phases in Sanicro25 heat resistant steel[J]. Mater Rev,2012,26(S2):174(in Chinese).
赵博,包汉生,刘正东,等.Sanicro25耐热钢中析出相的热力学计算与平衡相分析[J].材料导报,2012,26(专辑20):174.
27 Chi Chengyu, Yu Honghu, Dong Jianxin, et al. Aging hardening of Cu rich nano precipitates in 18Cr9Ni3CuNbN austenitic heat resistant steel [J]. J Heat Treatment,2011,32(4):58(in Chinese).
迟成宇, 于鸿壶, 董建新,等. 富铜纳米析出相在18Cr9Ni3CuNbN奥氏体耐热钢中的时效强化[J]. 材料热处理学报,2011,32(4):58.
28 Zheng Leigang, Hu Xiaoqiang, Kang Xiuhong, et al. Characteristics of precipitation of M23C6 type carbides in Mn-N-Cr austenitic heat resistant steel and its influence on the toughness and plasticity [J]. Chinese J Metals,2013,49(9):1081(in Chinese).
郑雷刚, 胡小强, 康秀红,等. Cr-Mn-N奥氏体耐热钢中M23C6型碳化物析出特征及其对韧塑性的影响[J]. 金属学报,2013,49(9):1081.
29 Zhao Bo.Effect of W content on microstructure and properties of San-icro25 steel [D]. Kunming:Kunming University of Science and Technology,2013.
赵博. W含量对Sanicro25钢组织和性能的影响[D]. 昆明:昆明理工大学,2013.
30 Peng B, Zhang H, Hong J, et al. The evolution of precipitates of 22Cr-25Ni-Mo-Nb-N heat-resistant austenitic steel in long-term creep[J]. Mater Sci Eng A,2010,527(16):4424.
31 Rutkowski B, Gil A, Czyrska-Filemonowicz A. Microstructure and chemical composition of the oxide scale formed on the Sanicro25 steel tubes after fireside corrosion[J]. Corros Sci,2015,102(2016):373.
32 Tassa O, Matera S, Sandstrom R, et al. Microstructure evolution after long term high temperature exposure of 22-25Cr austenitic stainless steels[C]// Liege Confrence: Materials for Advanced Po-wer Engineering. 2014.
33 Shim J H, Kozeschnik E, Jung W S, et al. Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels[J]. Calphad-computer Coupling Phase Diagrams Thermochem,2010, 34(1):105.
34 Iseda A, Okada H, Semba H, et al. Long term creep properties and microstructure of SUPER304H, TP347HFG and HR3C for A-USC boilers[J]. Energy Mater Mater Sci Eng Energy Systems,2007, 2(4):199.
35 Rautio R,Bruce S. Sandvik Sanicro 25: A new material for ultrasupercritical coal fired boilers[J]. Sandvik Mater Technol,2004,10:25.
36 Peng Zhifang, Ren Wen, Yang Chao, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service[J]. Chinese J Me-tals, 2015(11):1325(in Chinese).
彭志方, 任文, 杨超,等. HR3C钢运行过热器管的脆化与晶界M23-C6相参量演化的关系[J]. 金属学报, 2015(11):1325.
37 Li Xinmei, Zhang Zhongwen, Du Baoshuai, et al. Microstructure and impact toughness of HR3C steel after aging at 600℃[J]. Mater Mechan Eng,2014,38(7):95(in Chinese).
李新梅, 张忠文, 杜宝帅,等. 600 ℃时效后HR3C钢的显微组织和冲击韧性[J]. 机械工程材料, 2014(7):95.
38 Wang J, Zhou L, Sheng L, et al. The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater Des,2012, 39(39):55.
39 Yan J, Gu Y, Sun F, et al. Evolution of microstructure and mecha-nical properties of a 25Cr-20Ni heat resistant alloy after long-term service[J]. Mater Sci Eng A,2016,675:289.
40 Liu Junjian, Chen Guohong, Wang Jiaqing, et al. Effect of aging treatment on microstructure and mechanical properties of HR3C steel[J]. J Hefei University of Technology,2011,34(1):47(in Chinese).
刘俊建, 陈国宏, 王家庆,等. 时效热处理对HR3C钢组织结构及力学性能的影响[J]. 合肥工业大学学报,2011,34(1):47.
41 Calmunger M, Chai G, Johansson S, et al. Creep and fatigue inte-raction behavior in sanicro 25 heat resistant austenitic stainless steel[J]. Trans Indian Institute Metals,2015,69(2):1.
42 Zurek J, Yang S, Lin D, et al. Microstructural stability and oxidation behavior of Sanicro 25 during long-term steam exposure in the temperature range 600-750 ℃[J]. Mater Corros,2015,66(4):315.
43 Huang Zhuping, Hu Zhengfei, Wang Qijiang, et al. Creep rupture property and fracture behavior of HR3C heat-resistant steel at 650 ℃[J]. J Heat Treatment,2013,34(11):61(in Chinese).
黄竹平, 胡正飞, 王起江,等. HR3C耐热钢650℃持久性能与断裂行为[J]. 材料热处理学报,2013, 34(11):61.
44 Chai G, Boström M, Olaison M, et al. Creep and LCF behaviors of newly developed advanced heat resistant austenitic stainless steel for A-USC ☆[J]. Procedia Eng,2013,55(12):232.
45 Yin Z,Cai H,Liu H G.Performance on new heat-resistant steel HR3C in the ultra-supercritical units after service at high temperature for 25000 hours[J].Proceed CSEE,2011,31(29):103(in Chinese)
殷尊, 蔡晖, 刘鸿国. 新型耐热钢HR3C在超超临界机组高温服役25000 h后的性能研究[J]. 中国电机工程学报,2011,31(29):103.
46 Polák J, PetrášR, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature[J]. Mater Sci Eng A,2014,615:175.
47 Chen Liang, Lu Zhengran. Study on welding process performance of Sanicro25 new material of high-temperature superheater and reheater for USC boiler with 700 ℃[J].Boiler Technol,2015,46(5):49(in Chinese)
陈亮, 卢征然. 700 ℃超超临界锅炉高温过热器再热器用Sanicro25新材料焊接工艺研究[J]. 锅炉技术, 2015,46(5):49.
48 Jamrozik, Przemysław, Sozańska, et al. High-temperature corrosion resistance of welded joints in Sanicro25 steel[J]. Solid State Phenomena,2015,227:401.
49 Kotowicz J, Michalski S. Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery[J]. Appl Energy,2016,179:806.
50 Intiso L, Johansson L G, Canovic S, et al. Oxidation behaviour Sa-nicro25 (42Fe22Cr25NiWCuNbN) in O2/H2O mixture at 600 ℃[J]. Oxid Met,2012,77(77):209.
51 Intiso L, Johansson L G, Svensson J E, et al. Oxidation of Sanicro25 (42Fe22Cr25NiWCuNbN) in O2, and O2+H2O environments at 600—750 ℃[J]. Oxid Met,2015,83(3-4):367.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed