Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 85-89    https://doi.org/10.11896/j.issn.1005-023X.2017.013.011
  材料综述 |
车用轻量化铝合金材料本构关系研究进展*
张文沛1,2,3, 李欢欢1,2,3, 胡志力2,3, 秦训鹏2,3
1 武汉理工大学材料科学与工程学院,武汉 430070;
2 现代汽车零部件技术湖北省重点实验室,武汉 430070;
3 汽车零部件技术湖北省协同创新中心,武汉 430070
Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting
ZHANG Wenpei1,2,3, LI Huanhuan1,2,3, HU Zhili2,3, QIN Xunpeng2,3
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070;
2 Hubei Province Key Laboratory of Modern Automotive Technology, Wuhan 430070;
3 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了车用轻量化铝合金材料塑性流变行为的建模。随着成形技术与设备的进步,铝合金的成形方式已不再局限于传统的冷成形,热成形与高速成形的新工艺不断涌现,对本构模型的准确性要求也不断提高。由此,高温下材料的本构关系已成为研究的热点,并进一步将微观组织结构的演变包括位错运动和损伤演化等耦合到本构模型中,提高了本构模型的准确性。这些模型被证明能够较好地描述材料的塑性流变行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文沛
李欢欢
胡志力
秦训鹏
关键词:  铝合金  本构模型  微观组织  结构演变    
Abstract: The progress of modeling the plastic rheological behavior of aluminum alloy which can be used for automobile lightweighting is reviewed. With the development of forming technology and equipment, the forming methods of aluminum alloy are not confined to traditional cold forming any more. The technology of hot forming and high-velocity forming continuously appears and the requirement for the accuracy of constitutive model is improving. In consequence, the constitutive relationship of aluminum alloy at elevated temperature becomes a research focus and microstructure evolution is incorporated into constitutive model in order to improve its accuracy, including the dislocation movement and damage evolution. These models are proved to be able to describe the plastic rheological behavior of materials well.
Key words:  aluminum alloy    constitutive model    microstructure    structural evolution
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51405358);中国汽车产业创新发展联合基金(U1564202);中国博士后科学基金特别资助项目(2015T80844)
通讯作者:  胡志力:通讯作者,男,1983年生,博士,副教授,主要从事汽车轻量化技术的研究 E-mail:zhilihuhit@163.com   
作者简介:  张文沛:男,1993年生,硕士研究生,主要从事汽车轻量化技术的研究 E-mail:wpzhang93@163.com
引用本文:    
张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting. Materials Reports, 2017, 31(13): 85-89.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.011  或          https://www.mater-rep.com/CN/Y2017/V31/I13/85
1 Peng Xiaodong, Li Yulan, Liu Jiang. The applications of light alloys to automotive industry[J]. Mater Mechan Eng,1999,23(2):1(in Chinese).
彭晓东, 李玉兰, 刘江. 轻合金在汽车上的应用[J]. 机械工程材料,1999,23(2):1.
2 Lin J, Dean T A. Modelling of microstructure evolution in hot for-kming using unified constitutive equations[J]. J Mater Process Tech-nol,2005,167(2-3):354.
3 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague:IBC,1983:541.
4 Zhang Zhengli. Construction of dynamic mechanical constitutive model of 2024 aluminum[J]. J Shenyang Aerospace University,2014,31(2):47(in Chinese).
张正礼. 2024铝合金动态力学本构模型构建[J]. 沈阳航空航天大学学报,2014,31(2):47.
5 Tan J Q, Zhan M, Liu S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Mater Sci Eng A,2015,631(1):214.
6 Boldyrev I S, Shchurov I A, Nikonov A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces′ prediction[J]. Procedia Eng,2016,150:866.
7 Kordkheili S A H, Ashrafian M M, Toozandehjani H. A rate-dependent constitutive equation for 5052 aluminum diaphragms[J]. Mater Des,2014,60(8):13.
8 Uemori T, Sumikawa S, Naka T, et al. Observations of cyclic deformation behaviors of aluminum sheet and constitutive modeling[J]. Procedia Eng,2014,81:933.
9 Fields D S, Backofen W A. Determination of strain hardening cha-racteristics by torsion testing[J]. Proc Soc Test Mater,1957,57:1259.
10 Ying Liang, Dai Minghua, et al. Thermal constitutive model and numerical simulation of hot forming for 6061-T6 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(7):1815(in Chinese).
盈亮, 戴明华,等. 6061-T6铝合金高温本构模型及温成形数值模拟[J]. 中国有色金属学报,2015,25(7):1815.
11 Liu W H, He Z T, Chen Y Q, et al. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Trans Nonferrous Met Soc China,2014,24(7):2179.
12 Bobbili R, Paman A, Madhu V. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy[J]. Mater Sci Eng A,2016,651:753.
13 Trimble D, O′Donnell G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy[J]. Trans Nonferrous Met Soc China,2016,26(5):1232.
14 Pare V, Modi S, Jonnalagadda K N. Thermo-mechanical behavior and bulk texture studies on AA5052-H32 under dynamic compression[J]. Mater Sci Eng A,2016,668:38.
15 Sun Y, Ye W H, Hu L X. Constitutive modeling of high-temperature flow behavior of Al-0.62Mg-0.73Si aluminum alloy[J]. J Mater Eng Perform,2016,25(4):1621
16 Saravanan L, Senthilvelan T. Constitutive equation and microstructure evaluation of an extruded aluminum alloy[J]. J Mater Res Technol,2016,5(1):21.
17 Asgharzadeh A, Aval H J, Serajzadeh S. A study on flow behavior of AA5086 over a wide range of temperatures[J]. J Mater Eng Perform,2016,25(3):1076.
18 Ashtiani H R R, Shahsavari P. Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy[J]. Mechan Mater,2016,100:209.
19 Khan A S, Liu H. Variable strain rate sensitivity in an aluminium alloy: Response and constitutive modeling[J]. Int J Plast,2012,36(9):1.
20 Trimble D, O′Donnell G E. Constitutive modelling for elevated temperature flow behaviour of AA7075[J]. Mater Des,2015,76:150.
21 Voyiadjis G Z, Almasri A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechan Mater,2008,40(6):549.
22 Kabirian F, Khan A S, Pandey A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling[J]. Int J Plast,2014,55:232.
23 Subroto T, Miroux A, Eskin D G, et al. Tensile mechanical properties, constitutive parameters and fracture characteristics of an as-cast AA7050 alloy in the near-solidus temperature regime[J]. Mater Sci Eng A,2017,679:28.
24 Xiao G, Yang Q W, Li L X. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans Nonferrous Met Soc China,2016,26(4):1096.
25 Estrin Y. Dislocation theory based constitutive modelling: Foundations and applications[J]. J Mater Process Technol,1998,80-81(98):33.
26 Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation[J]. J Mater Process Technol,2003,s143-144(1):281.
27 Fu Lei, Wang Baoyu, Lin Jianguo, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J]. J University of Science and Technology Beijing,2013,35(10):1333(in Chinese).
傅垒, 王宝雨, 林建国, 等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,2013,35(10):1333.
28 Lin J, Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys[J]. Int J Plast,1999,15(11):1181.
29 Summers P T, Mouritz A P, Case S W, et al. Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116[J]. Mater Sci Eng A,2015,632:14.
30 Lin J, Cheong B H, Yao X. Universal multi-objective function for optimising superplastic-damage constitutive equations[J]. J Mater Process Technol,2002,125(2):199.
31 Ma Wenyu, Wang Baoyu, Zhou Jing, et al. Damage constitutive model for thermal deformation of AA6082 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(3):595(in Chinese).
马闻宇, 王宝雨, 周靖, 等. AA6082铝合金热变形损伤本构模型[J]. 中国有色金属学报,2015,25(3):595.
32 Ma W Y, Wang B Y, Bian J H, et al. A new damage constitutive model for thermal deformation of AA6111 sheet[J]. Metall Mater Trans A,2015,46(6):2748.
33 Hu P, Meng Q C, Hu W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corros Sci,2016,113:78.
34 Ganjiani M. A damage model incorporating dynamic plastic yield surface[J]. J Comput Appl Mech,2016,47(1):11.
35 Zhuang Weimin, Li Bingjiao, Xie Dongxuan. Thermoforming process optimization for B pillar of 7075 aluminum alloy based on damage factor[J]. Automotive Eng,2015,37(11):1353(in Chinese).
庄蔚敏, 李冰娇, 解东旋. 基于损伤因子的7075铝合金B柱热成形工艺优化[J]. 汽车工程,2015,37(11):1353.
36 Lin J. Selection of material models for predicting necking in superplastic forming[J]. Int J Plast,2003,19(4):469.
37 Yan S L, Yang H, Li H W, et al. A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation[J]. Int J Plast,2016,85:203.
38 Austin R A, Mcdowell D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates[J]. Int J Plast,2011,27(1):1.
39 Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O[J]. Int J Plast,2015,75:226.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[3] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[4] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[8] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[9] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[10] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[11] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[12] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[13] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[14] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[15] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed