Please wait a minute...
CLDB  2017, Vol. 31 Issue (13): 146-150    https://doi.org/10.11896/j.issn.1005-023X.2017.013.019
  生物医用材料 |
显微组织对医用TC4钛合金U型钉缩口的影响
白鹏飞1, 闵小华1, 陶晓杰2, 钟功诚2, 白树玉2, 程从前1, 赵杰1
1 大连理工大学材料科学与工程学院,大连 116024;
2 大连盛辉钛业有限公司,大连 116600
Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy
BAI Pengfei1, MIN Xiaohua1, TAO Xiaojie2, ZHONG Gongcheng2, BAI Shuyu2, CHENG Congqian1, ZHAO Jie1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024;
2 Dalian SUNTEC TITANIUM LTD, Dalian 116600
下载:  全 文 ( PDF ) ( 1738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过光学显微镜、维氏硬度、拉伸实验、X射线衍射和电子背散射衍射等方法,对比分析了两种缩口尺寸不同的医用U型钉用TC4钛合金棒材的显微组织和力学性能。基于两种棒材的显微组织和力学性能的差别,探讨了不同棒材加工的U型钉缩口差异的原因。结果表明:两种棒材横截面的显微组织比较均匀,差异不大,而纵截面显微组织的差异比较明显。大缩口棒材纵截面的α相为变形晶粒,小缩口棒材纵截面的β相主要为等轴晶,两种棒材的β相无明显差别。大缩口棒材的维氏硬度和屈服强度都高于小缩口棒材。再结晶程度的不同导致两种棒材的显微组织和力学性能不同,进而引起U型钉缩口的差异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白鹏飞
闵小华
陶晓杰
钟功诚
白树玉
程从前
赵杰
关键词:  TC4钛合金  U型钉  缩口尺寸  显微组织  力学性能    
Abstract: Microstructure and mechanical properties of two medical TC4 titanium alloy bars, which made medical U-shaped nails with different necking size, were studied by optical microscope, Vickers hardness, tensile test, X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). Based on the difference of microstructure and mechanical properties of two TC4 alloy bars, the reason why necking of U-shaped nails didn′t unit had been explored. The results show that microstructure of two TC4 alloy bars are uniform at the cross-section. However, α phase of big necking bar is mainly deformed grain at the longitudinal-section, while the small necking bar is mainly equiaxial grain. In addition, β phase of two bars has no obvious difference. The Vickers hardness and yield strength of big necking bar are higher than that of small necking bar. The different degree of recrystallization of two bars contributes to the different microstructure and mechanical properties,which results in the difference of necking size of U-shaped nails.
Key words:  TC4 titanium alloy    U-shaped nail    necking size    microstructure    mechanical property
出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.2+3  
通讯作者:  闵小华:通讯作者,男,1974年生,博士,教授,博士研究生导师,研究方向为高性能和多功能钛合金 E-mail:minxiaohua@dlut.edu.cn   
作者简介:  白鹏飞:男,1990年生,硕士研究生,研究方向为生物医用钛合金 E-mail:bpf2014@mail.dlut.edu.cn
引用本文:    
白鹏飞, 闵小华, 陶晓杰, 钟功诚, 白树玉, 程从前, 赵杰. 显微组织对医用TC4钛合金U型钉缩口的影响[J]. CLDB, 2017, 31(13): 146-150.
BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy. Materials Reports, 2017, 31(13): 146-150.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.019  或          https://www.mater-rep.com/CN/Y2017/V31/I13/146
1 Li Hongmei, Lei Ting, Fang Shuming, et al. Researc h progress of biomedical titanium alloys [J]. Metall Funct Mater,2011,18(2):70 (in Chinese).
李红梅,雷霆,方树铭,等. 生物医用钛合金的研究进展[J]. 金属功能材料,2011,18(2):70.
2 Zhang Wenyu. The research progress of biomedical titanium alloys [J]. Chem Adhesion,2014,36(5):369(in Chinese).
张文毓. 生物医用钛合金的研究进展[J]. 化学与黏合,2014,36(5):369.
3 Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Mater Sci Eng A,1998,243(1):244.
4 Hao Yulin, Yang Rui. High strength nano-structured Ti-Nb-Zr-Sn alloy [J]. Acta Metall Sin,2005,41(11):75(in Chinese).
郝玉琳,杨锐. 纳米高强Ti-Nb-Zr-Sn合金[J]. 金属学报,2005,41(11):75.
5 Zhao X L, Niinomi M, Nakai M, et al. Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young′s modulus for spinal fixation applications [J]. Acta Biomater,2011,7(8):3230.
6 Santosp F, Niinomi M, Cho K, et al. Microstructures, mechanical properties and cytotoxicity of low beta Ti-Mn alloys for biomedical applications [J]. Acta Biomater,2015,26:366.
7 Liu H H, Niinomi M, Nakai M, et al. β-Type titanium alloys for spinal fixation surgery with high Young′s modulus variability and good mechanical properties [J]. Acta Biomater,2015,24:361.
8 Liu H H, Niinomi M, Nakai M, et al. Mechanical properties and cytocompatibility of oxygen-modified β-type Ti-Cr alloys for fixation devices [J]. Acta Biomater,2015,12(1):352.
9 Liu H H, Niinomi M, Nakai M, et al. Athermal and deformation-induced ω-phase transformations in biomedical beta-type alloy Ti-9Cr-0.2O [J]. Acta Mater,2016,106:162.
10 Zheng Kai, Yu Xiuchun, Guo Zheng, et al. The application and development of metal materials in orthopedics [J]. Orthopaedic Biomech Mater Clinical Study,2013,10(2):31(in Chinese).
郑凯,于秀淳,郭征,等. 生物金属材料在骨科的应用及发展[J]. 生物骨科材料与临床研究,2013,10(2):31.
11 《中国组织工程研究与临床康复》学术部.医用金属材料相关产品的应用现状和发展趋势[J]. 中国组织工程研究与临床康复,2010,14(51):9621.
12 Jia Zonghai. The optimum design and mechanical test of the novel cannulated pedicle screw [D]. Jinan: Shandong University,2011(in Chinese).
贾宗海. 新型可灌注椎弓根螺钉的优化设计及力学检测[D]. 济南:山东大学,2011.
13 Griza S, Andrade C E C, Batista W W, et al. Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects [J]. Eng Failure Anal,2012,25:133.
14 Huang Yongguang. Developments of titanium and titanium alloy and standardization for surgical implant [J]. Titanium Ind Prog,2010,27(1):1(in Chinese).
黄永光. 外科植入用钛及钛合金标准发展现状[J]. 钛工业进展,2010,27(1):1.
15 Huang Yamin, Pan Chunxu. Micro-stress-strain analysis in materials based upon EBSD technique: A review [J]. J Chinese Electron Microscope Soc,2010,29(1):662(in Chinese).
黄亚敏,潘春旭. 基于电子背散射衍射(EBSD)技术的材料微区应力应变状态研究综述[J]. 电子显微学报,2010,29(1):662.
16 Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater Sci Eng A,2012,535:32.
17 Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging [J]. Acta Mater,2011,59:658.
18 Min X H, Emura S, Zhang L, et al. Improvement of strength-ductility tradeoff in β titanium alloy through pre-strain induced twins combined with brittle ω phase [J]. Mater Sci Eng A,2015,646:279.
19 Cai M H, Wei X, Rolfe B, et al. Microstructure and texture evolution during tensile deformation of symmetric/asymmetric-rolled low carbon microalloyed steel [J]. Mater Sci Eng A,2015,641:297.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[8] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[9] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[10] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[11] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[12] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed