Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 68-72    https://doi.org/10.11896/j.issn.1005-023X.2017.012.015
  材料研究 |
纳米相复合Al-Sn合金的反应球磨制备及性能研究*
宋凯强1,2, 曾美琴1,2, 朱敏1,2, 胡仁宗1,2, 鲁忠臣2,3
1 华南理工大学材料科学与工程学院, 广州 510641;
2 广东省先进储能材料重点实验室, 广州 510641;
3 华南理工大学机械与汽车工程学院, 广州 510641
Synthesis of Nano-phase Composite Al-Sn Alloy by Reaction Ball Milling Process and Its Performance
SONG Kaiqiang1,2, ZENG Meiqin1,2, ZHU Min1,2, HU Renzong1,2, LU Zhongchen2,3
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, Guangzhou 510640;
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640
下载:  全 文 ( PDF ) ( 1694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用反应球磨制备Al-SnO2-MgH2粉末,然后通过压制和烧结制备出高热稳纳米相复合结构Al-Sn合金。运用 X 射线衍射仪(XRD)和扫描电镜(SEM)等研究反应球磨制备的纳米相复合Al-Sn合金的组织和性能。结果表明:采用两步法和添加MgH2组元的方式所制备的机械合金化(MA)Al-SnO2-MgH2复合粉末,经压制和600 ℃烧结,合金中的SnO2几乎全部被还原成单质Sn,并呈现双尺度结构。其中,共生反应形成的纳米级Sn粒子和Al2O3颗粒均匀弥散地分布在Al基体中,显著提高了合金的硬度,从而使合金表现出低的摩擦系数和磨损量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋凯强
曾美琴
朱敏
胡仁宗
鲁忠臣
关键词:  纳米相复合  Al-Sn合金  反应球磨  高热稳性  摩擦学性能    
Abstract: Reaction ball milling process was used to prepare Al-SnO2-MgH2 alloy powders, then a high thermal stability nanocomposite Al-Sn alloy was obtained by a combination of cold pressing and sintering. The effect of reaction ball milling process on the microstructure and properties were investigated by XRD and SEM. The results show that the SnO2 in the MA Al-SnO2-MgH2 alloy powder, which was produced by a two steps method with the addition of MgH2, was almost deoxidized into monolithic Sn after sintering at 600 ℃. Meanwhile, the in situ formed Sn exhibits a typical dual-scale structure. In particular, the symbiotic formed Sn and Al2O3 were in nano-size and homogeneously distributed in the Al matrix, improving the hardness obviously and resulting in a significantly reduction of friction coefficient and wear volume.
Key words:  nano-phase composite    Al-Sn alloy    reaction ball milling process    high thermal stability    tribological properties
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TF125.3  
基金资助: *国家自然科学基金(51501065);广东省自然科学基金(2014A030310395);中央高校基本科研业务费(2014ZB0020)
通讯作者:  鲁忠臣:通讯作者,男,1986年生,博士,讲师,主要从事金属纳米功能材料方面的研究 E-mail:mezclu@scut.edu.cn   
作者简介:  宋凯强:男,1990年生,硕士研究生,主要从事金属纳米功能材料方面的研究 E-mail:scut_song@163.com
引用本文:    
宋凯强, 曾美琴, 朱敏, 胡仁宗, 鲁忠臣. 纳米相复合Al-Sn合金的反应球磨制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(12): 68-72.
SONG Kaiqiang, ZENG Meiqin, ZHU Min, HU Renzong, LU Zhongchen. Synthesis of Nano-phase Composite Al-Sn Alloy by Reaction Ball Milling Process and Its Performance. Materials Reports, 2017, 31(12): 68-72.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.015  或          https://www.mater-rep.com/CN/Y2017/V31/I12/68
1 Liu X,Zeng M Q,Zhu M,et al. Promoting the high load-carrying capability of Al-20wt%Sn bearing alloys through creating nanocompo-site structure by mechanical alloying[J]. Wear,2012,294-295:387.
2 Noskova N I, Vil′danova N F, Filippov Y I, et al. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys[J]. Phys Met Metall,2006,102(6):646.
3 Dwivedi D K. Adhesive wear behaviour of cast aluminium-silicon alloys: Overview[J]. Mater Des,2010,31(5):2517.
4 Miyajima T,Tanaka Y,Katsuki E H,et al. Friction and wear pro-perties of lead-free aluminum alloy bearing material with molybdenum disulfide layer by a reciprocating test[J]. Tribol Int,2013,59:17.
5 Liu X, Zeng M Q, Zhu M, et al. Wear behavior of Al-Sn alloys with different distribution of Sn dispersoids manipulated by mechanical alloying and sintering[J].Wear,2008,265(11-12):1857.
6 Zhu M, Gao Y, Chung C Y, et al. Improvement of the wear beha-viour of Al-Pb alloys by mechanical alloying[J]. Wear,2000,242(1):47.
7 Zhu M, Zeng M Q, Gao Y, et al. Microstructure and wear properties of Al-Pb-Cu alloys prepared by mechanical alloying[J]. Wear,2002,253(7):832.
8 Kaneko J, Sugamata M, Btaž L, et al. Aluminum-low melting metal alloys prepared by mechanical alloying with addition of oxide[J]. Key Eng Mater,2000,188:73.
9 Patel J, Morsi K. Effect of mechanical alloying on the microstructure and properties of Al-Sn-Mg alloy[J]. J Alloys Compd,2012,540:100.
10 Ye Xin, Lu Zhongchen, Zeng Meiqin, et al.Effect of Si addition concentration on the microstructure and wear properties of MA Al-12%Sn[J]. Trans Nonferrous Met Soc China,2014,24 (1):53(in Chinese).
叶新, 鲁忠臣, 曾美琴, 等. Si 添加量对机械合金化Al-12%Sn合金组织与摩擦性能的影响[J]. 中国有色金属学报,2014,24(1):53.
11 Sun P L, Wu S P, Chin T S. Melting point depression of tin nano-particles embedded in a stable alpha-alumina matrix fabricated by ball milling[J]. Mater Lett,2015,144:142.
12 Sun P L, Wu S P, Chang S C, et al. Microstructure and melting behavior of tin nanoparticles embedded in alumina matrix processed by ball milling[J]. Mater Sci Eng A,2014,600:59.
13 Liu Xin, Zeng Meiqin, Ma Ying, et al. Variation of microstructure and hardness of nanocomposite Al-Sn alloy during sintering[J]. Heat Treat Metals,2009(3):27(in Chinese).
刘辛, 曾美琴, 马迎, 等. 纳米复合 Al-Sn 合金烧结中的组织和硬度变化[J]. 金属热处理,2009(3):27.
14 Lu Z C, Zeng M Q, Gao Y, et al. Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al-Sn alloys: A mechanism for improving wear performance[J]. Wear,2013,304(1):162.
15 Lu Z C, Gao Y, Zeng M Q, et al. Improving wear performance of dual-scale Al-Sn alloys:The role of Mg addition in enhancing Sn distribution and tribolayer stability[J]. Wear,2014,309(1):216.
16 Lu Z C, Zeng M Q, Gao Y, et al. Improving wear performance of dual-scale Al-Sn alloys by adding nano-Si@Sn: Effects of Sn nanophase lubrication and nano-Si polishing[J]. Wear,2015,338:258.
[1] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[2] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[3] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[4] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[5] 晁昀暄, 戴乐阳, 魏钰坤, 王永坚, 杜金洪. 磺酸钙/油酸改性碳基二硫化钼的制备及在乳化油中的摩擦学性能[J]. 材料导报, 2024, 38(2): 22090049-7.
[6] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[7] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[8] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[9] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[10] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[11] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[12] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[13] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[14] 郭竟尧, 侯显斌, 魏钰坤, 戴乐阳, 廖海峰, 孙迪. 纳米偏硼酸钙/还原石墨烯润滑添加剂的制备及摩擦学性能[J]. 材料导报, 2021, 35(20): 20011-20015.
[15] 王永欣, 胡艺纹, 赵海超, 李金龙, 王春婷, 毛金明, 王立平, 薛群基. 石墨烯基水润滑添加剂研究进展[J]. 材料导报, 2021, 35(19): 19055-19061.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed