Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (5): 847-854    https://doi.org/10.11896/j.issn.1005-023X.2018.05.022
  材料综述 |
沥青胶结料自愈合研究进展
朱建勇1, 何兆益2
1 重庆交通大学材料科学与工程学院,重庆 400074;
2 重庆交通大学土木工程学院,重庆 400074
Research Progress on Self-healing of Asphalt Binder
ZHU Jianyong1, HE Zhaoyi2
1 School of Material Science and Engineering,Chongqing Jiaotong University,Chongqing 400074;
2 School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074
下载:  全 文 ( PDF ) ( 1336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青自愈合是提高沥青路面使用寿命的有效手段之一,文章综合分析了近年来国内外沥青胶结料自愈合机理、实验方法、评价指标和自愈合技术等方面的研究,并指出现有机理模型难以解释温度、间歇时间和老化对沥青胶结料自愈合行为的影响,缺少科学有效的自愈合行为评价方法与指标,使得自愈合技术难以在工程中推广应用。建议综合现有自愈合机理宏微观模型理论,建立多尺度模型解释沥青胶结料的自愈合行为,提出具有普适性的实验方法和评价沥青胶结料自愈合行为的指标,并指出开发新型沥青自愈合增强剂是未来研究的热点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱建勇
何兆益
关键词:  沥青  自愈合  机理  评价指标    
Abstract: The self-healing capacity of asphalt binder is an effective way to improve the service life of asphalt pavement. This paper not olny presents the recently developed mechanism, test method, evaluating indicator and self-healing technology of asphalt binder, but also points out the shortcomings of existing research, for example: the models are difficult to explain the influence of temperature, rest time and aging on the self-healing behavior of asphalt binder, lack of scientific and effective self-healing behavior to evaluate methods and indexes, self-healing technology is difficult in the engineering application. Comprehensive existing self-hea-ling mechanism of macro and micro model theory, a multiscale model is proposed to explain the asphalt self-healing behavior, the self-healing universal test method and index of evaluation of asphalt binder and behavior, exploitation novel asphalt self-healing agent will be the hot issue in the future.
Key words:  asphalt binder    self-healing    mechanism    evaluating indicator
出版日期:  2018-03-10      发布日期:  2018-03-10
ZTFLH:  TB324  
作者简介:  朱建勇:男,1977年生,博士研究生,研究方向为建筑材料 E-mail:knightsc@126.com
引用本文:    
朱建勇, 何兆益. 沥青胶结料自愈合研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 847-854.
ZHU Jianyong, HE Zhaoyi. Research Progress on Self-healing of Asphalt Binder. Materials Reports, 2018, 32(5): 847-854.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.05.022  或          https://www.mater-rep.com/CN/Y2018/V32/I5/847
1 Bazin P, Saunier J B. Deformability, fatigue and healing properties of asphalt mixes[C]∥Proceedings of the 2nd International Confe-rence on the Structural Design of Asphalt Pavement.Ann Arbor,Michigan,USA,1967:438.
2 Shen S, Chiu H M, Huang H.Fatigue and healing in asphalt binders[C]∥Proceedings of the 88th Annual Meeting of the Transportation Research Road.Washington DC,2009.
3 Prager S, Tirrell M. The healing process at polymer-polymer interfaces[J].Journal of Chemical Physics,1981,75(10):5194.
4 De Gennes P. Chain polymers. (Book reviews: Scaling concepts in polymer physics)[J].Science,1980,208:1140.
5 De Gennes, Pierre Gilles. Scaling concepts in polymer physics[M].London:Cornell University Press,1979.
6 Wool R P, O’Connor K M. A theory crack healing in polymers[J].Journal of Applied Physics,1981,52(10):5953.
7 Wool R P, O’Connor K M. Time dependence of crack healing[J].Journal of Polymer Science Part C Polymer Letters,1982,20(20):7.
8 Kim Y H, Wool R P.A theory of healing at a polymer-polymer interface[J].Macromolecules,1983,16(7):1115.
9 Phillips M C. Multi-step models for fatigue and healing, and binder properties involved in healing[C]∥Proceedings of Euro Bitumen Workshop on Performance Related Properties for Bituminous Bin-ders,Luxembourg,1998.
10 Smith B J. Hesp S A M. Crack pinning in asphalt mastic and concrete: Effect of rest periods and mixtures[J].Journal of Materials in Civil Engineering,2003,15:75.
11 Lytton R. Characterizing asphalt pavements for performance[J].Transportation Research Record Journal of the Transportation Research Board,2000,1723(1):5.
12 Zollinger C J. Application of surface energy measurements to evaluate moisture susceptibility of asphalt and aggregates[D].Texas:Texas A & M University,2005.
13 Hefer A W, Little D N, Lytton R L. A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water (with discussion)[J].Asphalt Pa-ving Technology:Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2005,74:139.
14 Yang Jinyu, Li Bo, Li Xiaohui,et al. Effect of short-term aging on the surface energy of warm mix asphalt binder[J].Journal of Lanzhou Jiaotong University,2016,35(6):19(in Chinese).
杨进宇,李波,李晓辉,等.短期老化对温拌沥青结合料表面能的影响[J].兰州交通大学学报,2016,35(6):19.
15 Xu G, Wang H. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J].Fuel,2017,188:1.
16 Bhasin A, Little D N, Bommavaram R,et al. A framework to quantify the effect of healing in bituminous materials using materials properties[J].Road Materials and Pavement Design,2008,9:219.
17 Bommavaram R R. Evaluation of healing in asphalt binders using dynamic shear rheometer and molecular modeling techniques[D].Texas:Texas A & M University,2008.
18 Bommavaram R R, Bhasin A, Little D N. Use of dynamic shear rheometer to determine the intrinsic healing properties of asphalt binders[C]∥Transportation Research Board 88th Annual Meeting.Washington DC,2009.
19 Yao H, Dai Q, You Z, et al. Property analysis of exfoliated graphite nanoplatelets modified asphalt model using molecular dynamics (MD) method[J].Applied Sciences,2017,7(1):43.
20 Bhasin A, Bommavaram R, Greenfield M L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J].Journal of Materials in Civil Engineering,2011,23(4):485.
21 Baker D, Hawa T, Hossain Z, et al. Measurements of thermal and healing properties of nanoclay modified asphalt binders using molecular dynamics simulations[C]∥APS March Meeting.Oklahoma US,2014.
22 Shen S, Lu X, Liu L, et al. Investigation of the influence of crack width on healing properties of asphalt binders at multi-scale levels[J].Construction and Buil-ding Materials,2016,126:197.
23 Sun D, Lin T, Zhu X, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J].Computational Materials Science,2016,114:86.
24 Zhou X, Wu S, Liu G, et al. Molecular simulations and experimental evaluation on the curing of epoxy bitumen[J].Materials and Structures,2016,49(1):1.
25 Kringos N, Schmets A, Scarpas A, et al. Towards an understanding of the self-healing capacity of asphaltic mixtures[J].Heron,2011,56:45.
26 Hou Y, Wang L, Yue P, et al. Modeling mode Ⅰ cracking failure in asphalt binder by using nonconserved phase-field model[J].Journal of Materials in Civil Engineering,2014,26(4):684.
27 Yue Hou. Computational analysis of asphalt binder based on phase field method[D].Virginia:Blacksburg,2014.
28 Hou Y, Wang L, Pauli T, et al. Investigation of the asphalt self-healing mechanism using a phase-field model[J].Journal of Materials in Civil Engineering,2014,27(3):04014118.
29 Hou Y, Wang L, Pauli T, et al. An investigation of asphalt self-healing mechanism using phase-field model[J].Journal of Materials in Civil Engineering,2015,27:1.
30 Hou Y, Sun W, Das P, et al. Coupled navier-stokes phase-field model to evaluate the microscopic phase separation in asphalt binder under thermal loading[J].Journal of Materials in Civil Engineering,2016,28(10):04016100.
31 Bhasin A, Ganesan V. Preliminary investigation of using a multi-component phase field model to evaluate microstructure of asphalt binders[J].International Journal of Pavement Engineering,2017,18(9):775.
32 Schapery R A. A theory of crack initiation and growth in viscoelastic media[J].International Journal of Fracture,1975,11(1):141.
33 Schapery R A. Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media[J].International Journal of Fracture,1984,25(3):195.
34 Lytton R L, Chen C W, Little D N. Microdamage healing in asphalt and asphalt concrete, volume Ⅲ: A micromechanics fracture and healing model for asphalt concrete[J].Mathematical Models,2001.
35 Traxler R N, Coombs C E. The colloidal nature of asphalt as shown by its flow properties[J].The Journal of Physical Chemistry,2002,40(9):1133.
36 Saal R N J, Labout J W A. Rheological properties of asphaltic bitumen[J].The Journal of Physical Chemistry,1940,44:149.
37 Shan L, Tan Y, Underwood B S, et al. Thixotropic characteristics of asphalt binder[J].Journal of Materials in Civil Engineering,2011,23(12):1681.
38 Mouillet V, Roche C D L, Chailleux E, et al. Thixotropic behaviour of paving grade bitumens under dynamic shear[C]∥Eurasphalt & Eurobitume 5th E&E Congres.Istanbul,2012.
39 Shan Liyan.Fatigue&rheology mechanism of asphalt binder based on viscoelastic characteristic[D].Harbin:Harbin Institute of Technology,2010(in Chinese).
单丽岩.基于粘弹特性的沥青疲劳——流变机理研究[D].哈尔滨:哈尔滨工业大学,2010.
40 Canestrari F, Virgili A, Graziani A, et al. Modeling and assessment of self-healing and thixotropy properties for modified binders[J].International Journal of Fatigue,2015,70(1):351.
41 Mazzoni G, Stimilli A, Canestrari F. Self-healing capability and thi-xotropy of bituminous mastics[J].International Journal of Fatigue,2016,92:8.
42 Mazzoni G, Stimilli A, Cardone F, et al. Fatigue, self-healing and thixotropy of bituminous mastics including aged modified bitumens and different filler contents[J].Construction and Building Materials,2017,131:496.
43 Qiu J, Van de Ven M F C, Schlangen H E J G, et al. Characterization and modelling of self healing of bituminous materials towards durable asphalt pavement[C]∥Isap.Nanjing,2012.
44 Leegwater G, Scarpas T, Erkens S. Direct tensile test to assess hea-ling in asphalt[C]∥Transportation Research Record Journal of the Transportation Research Board.Washington DC,2016.
45 Su J F, Yang P, Wang Y Y, et al. Investigation of the self-healing behaviors of microcapsules/bitumen composites by a repetitive direct tension test[J].Materials,2016,9(7):600.
46 Qiu J, Molenaar A, Ven M F C V D, et al. Investigation of self hea-ling behaviour of asphalt mixes using beam on elastic foundation setup[J].Materials and Structures,2012,45(5):777.
47 Nahar S N, Schmets A J M, Scarpas A, et al. Temperature and thermal history dependence of the microstructure in bituminous materials[J].European Polymer Journal,2013,49(8):1964.
48 Nahar S N, Qiu J, Schmets A J M, et al. Turning back time: Rheological and microstructural assessment of rejuvenated bitumen[C]∥Transportation Research Board 93rd Annual Meeting.Washington DC,2014.
49 Sun Daquan, Sun Guoqiang, Zhu Xingyi, et al. Identification of wetting and molecular diffusion stages duringself-healing process of asphalt binder via fluorescence microscope[J].Construction and Buil-ding Materials,2017,132:230.
50 Kim Y R, Little D N, Lytton R L, et al. Use of dynamic mechanical analysis (DMA) to evaluate the fatigue and healing potential of asphalt binders in sand asphalt mixtures[J].Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,2002,71:176.
51 Kim Y R, Little D N, Lytton R L. Fatigue and healing characterization of asphalt mixtures[J].Journal of Materials in Civil Enginee-ring,2003,15(1):75.
52 Carpenter S, Shen S. Dissipated energy approach to study hot-mix asphalt healing in fatigue[J].Transportation Research Record:Journal of the Transportation Research Board,2006,1970:178.
53 Shen S, Chiu H M, Huang H. Characterization of fatigue and hea-ling in asphalt binders[J].Journal of Materials in Civil Engineering,2010,22(9):846.
54 Shen S, Chiu H M, Huang H. Fatigue and healing in asphalt bin-ders[C]∥Transportation Research Board 88th Annual Meeting.Washington DC,2009.
55 Tan Y, Shan L, Kim Y R, et al. Healing characteristics of asphalt binder[J].Construction and Building Materials,2012,27(1):570.
56 Jiang H, Wu S, Wu S. Self healing capacity of asphalt binders[J]. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(4):794.
57 Meng Yongjun,Zhang Xiaoning. Fatigue performances of modified asphalts based on cumulative dissipated energy ratio[J].Journal of South China University of Technology(Natural Science Edition),2012,40(2):99(in Chinese).
孟勇军,张肖宁.基于累计耗散能量比的改性沥青疲劳性能[J].华南理工大学学报(自然科学版),2012,40(2):99.
58 Pang L, Jiang H, Wu S, et al. Self healing capacity of asphalt bin-ders[J].Journal of Wuhan University of Technology-Materials Science Edition,2012,27(4):794.
59 Santagata E, Baglieri O, Tsantilis L, et al. Fatigue and healing properties of nano-reinforced bituminous binders[J].International Journal of Fatigue,2015,80:30.
60 Tang J, Liu Q, Wu S, et al. Investigation of the optimal self-healing temperatures and healing time of asphalt binders[J].Construction & Building Materials,2016,113:1029.
61 Huang W, Lv Q, Xiao F. Investigation of using binder bond strength test to evaluate adhesion and self-healing properties of modified asphalt binders[J].Construction & Building Materials,2016,113:49.
62 Lv Q, Huang W, Xiao F. Laboratory evaluation of self-healing pro-perties of various modified asphalt[J].Construction & Building Materials,2017,136:192.
63 Wang Haopeng, Yang Jun, Wang Zheng,et al.Study on influence factors of self-healing characteristics of asphalt[J].Petroleum Asphalt,2013,27(6):11(in Chinese).
王昊鹏,杨军,王征,等.沥青自愈特性影响因素研究[J].石油沥青,2013,27(6):11.
64 White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites[J].Nature,2002,415(6873):794.
65 Garcia A, Schlangen E, Van de Ven M. Two ways of closing cracks on asphalt concrete pavements: Microcapsules and induction heating[J].Key Engineering Materials,2010,417:573.
66 García A, Schlangen E, Van de Ven M, et al. Preparation of capsules containing rejuvenators for their use in asphalt concrete[J].Journal of Hazardous Materials,2010,184(1):603.
67 Garcia A, Schlangen E, Van D V M F C. How to make capsules containing rejuvenators for their use in asphalt concrete[J].Journal of Wuhan University of Technology,2010,90(17):603.
68 Su J F, Schlangen E. Synthesis and physicochemical properties of high compact microcapsules containing rejuvenator applied in asphalt[J].Chemical Engineering Journal,2012,198:289.
69 Su J F, Qiu J, Schlangen E. Stability investigation of self-healing microcapsules containing rejuvenator for bitumen[J].Polymer Degradation and Stability,2013,98(6):1205.
70 Su J F, Qiu J, Schlangen H. Self-healing bitumen by microcapsules containing rejuvenator[C]∥Proceedings of the 4th International Conference on Self-Healing Materials.Ghent,Belgium,2013.
71 Su J F, Schlangen E, Qiu J. Design and construction of microcapsules containing rejuvenator for asphalt[J].Powder Technology,2013,235:563.
72 Su J F, Schlangen E, Wang Y Y. Investigation the self-healing mechanism of aged bitumen using microcapsules containing rejuvenator[J].Construction and Building Materials,2015,85:49.
73 Su J F, Wang Y Y, Han N X, et al. Experimental investigation and mechanism analysis of novel multi-self-healing behaviors of bitumen using microcapsules containing rejuvenator[J].Construction and Building Materials,2016,106:317.
74 Su J F, Qiu J, Schlangen E, et al. Investigation the possibility of a new approach of using microcapsules containing waste cooking oil: In situ rejuvenation for aged bitumen[J].Construction and Building Materials,2015,74:83.
75 Wang Y Y, Su J F, Schlangen E, et al. Fabrication and characte-rization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method[J].Construction and Building Materials,2016,121:471.
76 Chung K, Lee S, Park M, et al. Preparation and characterization of microcapsule-containing self-healing asphalt[J].Journal of Industrial and Engineering Chemistry,2015,29:330.
77 Li Rui,Zhou Tianshu, Pei Jianzhong.Design, preparation and pro-perties of microcapsules containingrejuvenator for asphalt[J].Construction and Building Materials,2015,99:143.
78 Sun D, Hu J, Zhu X. Size optimization and self-healing evaluation of microcapsules in asphalt binder[J].Colloid and Polymer Science,2015,293(12):3505.
79 Van der Zwaag S. Routes and mechanisms towards self healing behaviour in engineering materials[J].Bulletin of the Polish Academy of Sciences:Technical Sciences,2010,58(2):227.
80 Schlangen E, Sangadji S. Addressing infrastructure durability and sustainability by self healing mechanisms-recent advances in self healing concrete and asphalt[J].Procedia Engineering,2013,54:39.
81 Santagata E, Baglieri O, Tsantilis L, et al. Fatigue and healing properties of bituminous mastics reinforced with nano-sized additives[J].Mechanics of Time-Dependent Materials,2016,20(3):367.
82 Chen Y, Gong M, Yao Z, et al. Investigation on the self-healing abilities of base and ionomer-modified asphalt binders with a T-Peel test[C]∥International Symposium on Frontiers of Road and Airport Engineering. Shanghai,2015:64.
83 García , Schlangen E, Van de Ven M, et al. Electrical conductivity of asphalt mortar containing conductive fibers and fillers[J].Construction and Building Materials,2009,23(10):3175.
84 García , Schlangen E, Van de Ven M, et al. Induction heating of mastic containing conductive fibers and fillers[J].Materials and Structures,2011,44(2):499.
85 García A, Norambuena-Contreras J, Partl M N. A parametric study on the influence of steel wool fibers in dense asphalt concrete[J].Materials and Structures,2014,47(9):1559.
86 Qiu J, Van de Ven M F C, Molenaar A. Durable asphalt pavements are self healing[J].Journal of Wuhan University of Technology-Materials Science Edition,2010,17:30.
87 Liu Q, Schlangen E, Garcia A, et al. Induction heating of electrically conductive porous asphalt concrete[J].Construction and Building Materials,2010,24(7):1207.
88 Wang H, Yang J, Liao H, et al. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers[J].Construction and Building Materials,2016,122:184.
89 Wang Z, Dai Q, Porter D, et al. Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams[J].Construction and Building Materials,2016,126:1012.
90 Norambuena-Contreras J, Serpell R, Vidal G V, et al. Effect of fibres addition on the physical and mechanical properties of asphalt mixtures with crack-healing purposes by microwave radiation[J].Construction and Building Materials,2016,127:369.
91 Jeoffroy E, Koulialias D, Yoon S, et al. Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials[J].Construction and Building Materials,2016,112:497.
92 Li R, Chen J, Zhou T, et al. Preparation and characterization of novel light induced self-healing materials for cracks in asphalt pavements[J].Construction and Building Materials,2016,105:336.
93 Wang Z, Dai Q, Guo S, et al. Experimental investigation of physical properties and accelerated sunlight-healing performance of flake graphite and exfoliated graphite nanoplatelet modified asphalt mate-rials[J].Construction and Building Materials,2017,134:412.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[6] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[7] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[8] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[9] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[10] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[11] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[12] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[13] 肖嵩, 刘明, 张小龙, 黄艳斐, 王海斗. 等离子喷涂熔滴铺展凝固行为研究现状[J]. 材料导报, 2024, 38(6): 22080031-12.
[14] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[15] 孙茂钧, 胡涛, 栾红波, 李茜, 佘祖新, 柏遇合, 王玲, 杨小奎, 周堃. 胶粘剂在湿热环境下的老化行为规律及环境损伤机理[J]. 材料导报, 2024, 38(5): 22090006-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed