Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 203-206    https://doi.org/10.11896/j.issn.1005-023X.2018.02.009
  物理   材料研究 |材料 |
苯磺酸甜菜碱表面改性阳离子交换膜
黄全江1,2,南君1,2,王三反1,2,李欣怡1,2,邹信1,2,张学敏1,2
1 寒旱地区水资源综合利用教育部工程中心, 兰州 730070
2 兰州交通大学环境与市政工程学院, 兰州 730070
Benzenesulfonic Acid Betaine Surface Modified Cation Exchange Membrane
Quanjiang HUANG1,2,Jun NAN1,2,Sanfan WANG1,2,Xinyi LI1,2,Xin ZOU1,2,Xuemin ZHANG1,2
1 Engineering Research Center for Cold and Arid Regions Water Resource Comprehensive Utilization, Ministry of Education, Lanzhou 730070
2 School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070
下载:  全 文 ( PDF ) ( 1788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用等离子体辉光放电技术,在以聚苯乙烯为基膜的阳离子交换膜表面接枝苯磺酸甜菜碱(SBMA)单体,制备出具有高选择透过性的阳离子交换膜。对改性前后的膜进行扫描电镜(SEM)、傅里叶红外光谱分析(FTIR)及氯离子泄漏率测试,表征膜的改性效果。结果表明:在SBMA浓度为60 g/L,等离子照射强度为0.7 W/cm 2,照射时间为7 min,照射气体氛围为氩气的条件下,改性效果最佳。改性膜含有的活性基团明显增多,表面致密均匀,氯离子泄漏率由原膜的14%降低至2%以下。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄全江
南君
王三反
李欣怡
邹信
张学敏
关键词:  苯磺酸甜菜碱  等离子体辉光放电  离子交换膜  表面改性  氯离子泄漏率    
Abstract: 

The cation exchange membrane with high selectivity was prepared by grafting benzenesulfonic acid betaine (SBMA) on the polystyrene-based cation exchange membrane by plasma glow discharge.In order to characterize the modification of the membrane, the SEM, FTIR and chloride ion leakage rates were measured before and after the modification. The results showed that the modified effect was the best when SBMA concentration was 60 g/L, the intensity of plasma irradiation was 0.7 W/cm 2, the irradiation time was 7 min, and the irradiation gas atmosphere was argon. After modification, the active groups contained in the membrane were obviously increased and the surface density was uniform. The ion chloride leakage rate of the modified membrane decreased from 14% to 2%.

Key words:  benzenesulfonic acid betaine    plasma glow discharge    ion-exchange membrane    surface modification    chloride ion leakage rate
出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB332  
基金资助: 国家科技支撑计划项目(2015BAE04B01);国家自然科学基金(21466019)
引用本文:    
黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
Quanjiang HUANG,Jun NAN,Sanfan WANG,Xinyi LI,Xin ZOU,Xuemin ZHANG. Benzenesulfonic Acid Betaine Surface Modified Cation Exchange Membrane. Materials Reports, 2018, 32(2): 203-206.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.009  或          https://www.mater-rep.com/CN/Y2018/V32/I2/203
图1  SBMA的分子结构
图2  等离子接枝反应过程
The type of film Ion exchange capacity
mmol/g
Chloride ion
leakage rate/%
Resistance
Ω·cm2
Hydrophilic
angle/(°)
Cation migration
ratio/%
IONSEP-HC-C original film 2.49 14.00 8.835 90 88.9
IONSEP-HC-C modified film 2.60 1.29 6.547 58 99.2
表1  改性前后膜性能参数比较
图3  SBMA单体浓度对改性膜氯离子泄漏率的影响
图4  等离子体放电时间对改性膜氯离子泄漏率的影响
Gas atmosphere Vacuum Nitrogen Argon
Chloride ion
leakage rate/%
2.97 2.46 1.29
表2  辉光放电气体氛围对改性膜选择透过性的影响
图5  (a)原膜及(b)60 g/L,0.7 W/cm2,7 min;(c)60 g/L, 0.7 W/cm2,10 min;(d)60 g/L,1.2 W/cm2,7 min不同条件下改性膜的SEM图
图6  改性前后膜的FTIR分析
1 Ross G J, Watts J F, Hill M P , et al. Surface modification of poly (vinylidene fluoride) by alkaline treatment 1.The degradation mecha-nism[J]. Polymer, 2000,41:1695.
2 Liu Q, Ye H, Zhang Y Z , et al. Preparation and whey protein separation property of poly (ethylene-covinyl alcohol) ultrafiltration membrane[J]. Polymer Materials Science and Engineering, 2016,32(12):145(in Chinese).
3 刘琦, 叶卉, 张玉忠 , 等. 乙烯-乙烯醇共聚物超滤膜的制备及对乳清蛋白的分离性能[J]. 高分子材料科学与工程, 2016,32(12):145.
4 Jedidi I, Khemakhem S, Sa?di S , et al. Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents[J]. Powder Technology, 2011,208(2):427.
5 Barredo-Damas S, Alcaina-Miranda M I, Bes-Piá A , et al. Ceramic membrane behavior in textile wastewater ultrafiltration[J]. Desalination, 2010,250(2):623.
6 Wang F L, Ran D Q, Zhang T , et al. Preparation and MFC performances of cation exchange membrances based on multiblock sulfonated poly(arylene ether sulfone)s[J]. Acta Polymerica Sinica, 2014,45(5):657.
7 Shimizu M, Saito T, Isogai A . Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions[J]. Ournal of Membrane Science, 2016,500:1.
8 Ogieglo W, Grooth J D, Wormeester H , et al. Relaxation induced optical anisotropy during dynamic overshoot swelling of zwitterionic polymer films[J]. Thin Solid Films, 2013,545:320.
9 Zhao Y F, Zhu L P, Yi Z , et al. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive[J]. Journal of Membrane Science, 2013,440:40.
10 Chang Y, Chang W J, Shi Y J . Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compa-tibility via atmospheric plasma-induced surface copolymerization[J]. ACS Applied Materials & Interfaces, 2011,3:1228.
11 Chen S H, Chang Y, Lee K R . Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization[J]. Langmuir, 2012,28(51):17733.
12 Jhong J F, Venault A, Hou C C , et al. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing[J]. ACS Applied Materials & Interfaces, 2013,5:6732.
13 Chen S F, Li L Y, Zhao C , et al. Surfac hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010,51(23):5283.
14 Wang X X . Dielectric barrier discharge and its applications[J]. High Voltage Engineering. 2009,35(1):1(in Chinese).
15 王新新 . 介质阻挡放电及其应用[J]. 高电压技术, 2009,35(1):1.
16 Kogelschatz U . Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003,23(1):1.
17 Massines F, Gherardi N, Naude N , et al. Recent advances in the understanding of homogeneous dielectric barrier discharges[J]. The European Physical Journal Applied Physics, 2009,47(2):22805.
18 Wang S F, Wan Y H, Zhang G J , et al. The revisions of migration path of ion in membrance and selective property[J]. Journal of Lanzhou Railway University(Natural Sciences), 2000,19(3):72(in Chinese).
19 王三反, 完颜华, 张国俊 , 等. 离子迁移途径及选择透过性的理论修正[J]. 兰州铁道学院学报, 2000,19(3):72.
20 Zhang G J, Meng H, Wang S F , et al. Elementary study of the new theory of potential close in the pore and the “cavity” transfer[J]. Environmental Chemistry, 2002,21(5):417(in Chinese).
21 张国俊, 孟洪, 王三反 , 等. 孔道电位封闭及“空穴”传递理论初探[J]. 环境化学, 2002,21(5):417.
[1] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[2] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[3] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[4] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[5] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[6] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[7] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[8] 刘筱涵, 杨培, 周晓燕. 等离子体改性增强农林生物质复合材料界面相容性研究进展[J]. 材料导报, 2024, 38(13): 23030072-11.
[9] 金磊源, 胡芳坤, 姜晓娇, 夏立, 刘冉, 徐佳乐, 涂秋芬, 熊开琴. 基于Notch信号通路抑制剂的多功能血管支架涂层制备及表征[J]. 材料导报, 2024, 38(12): 22120030-8.
[10] 杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
[11] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[12] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[13] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[14] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[15] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed