Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 81-89    https://doi.org/10.11896/j.issn.1005-023X.2017.09.011
  材料综述 |
改性碳纳米材料在低温燃料电池中的应用*
董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚
湖南大学化学化工学院,化学生物传感与计量学国家重点实验室,长沙 410082
Application of Modified Carbon Nanomaterials in Low-temperature Fuel Cells
DONG Qizhi, WAN Hansheng, ZENG Wenxia, YU Shumin, GUO Cancheng, YU Gang
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1929KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳纳米材料(如炭黑、介孔碳、碳纳米管、石墨烯、碳纳米纤维、碳纳米角等)因其优异的电学性能和结构特性(良好的导电性能和超大的比表面积),被研究者广泛用作低温燃料电池贵金属催化剂的载体。然而,作为催化剂载体的这类碳纳米材料通常都存在电化学腐蚀的问题,碳载体的腐蚀通常会导致贵金属纳米催化剂的聚集,这将使催化剂的性能降低。为了改善碳载体的抗腐蚀性能,提高金属纳米粒子的活性和稳定性,许多研究工作致力于制备特殊结构的碳纳米材料,或对碳纳米材料进行表面修饰、掺杂等。与此同时,为了取代价格昂贵的贵金属催化剂,非贵金属催化剂的研究也成为一大热点,掺杂碳纳米材料就是研究热点之一。对近几年来围绕碳纳米材料制备、改性,以及这些改性碳纳米材料作为金属纳米粒子载体等的研究工作做了较为详细的综述,同时介绍了掺杂碳纳米材料作为氧还原催化剂的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董奇志
万汉生
曾文霞
余淑敏
郭灿城
余刚
关键词:  低温燃料电池  碳纳米材料  改性  载体  氧还原    
Abstract: Carbon nanomaterials, such as carbon blacks, mesoporous carbon, carbon nanotubes, grapheme,carbon nanofibers, carbon nanohorns and so forth, are widely used as catalyst supports in low-temperature fuel cells due to their excellent electrical properties and structural characteristics, such as ultra high surface area and excellent conductivity. However carbonaceous supports are susceptible to corrosion under the harsh chemical and electrochemical oxidation conditions. The corrosion of carbon supports causes detachment and agglomeration of precious meter nanoparticles, which will result in the degradation of catalyst performance. In order to improve the corrosion resistance of carbon supports, enhance the activity and stability of the metal nanoparticles, many researchers dedicated to the preparation of carbon nanomaterials with special structure, or modifying and doping the carbon supports, etc. At the same time, in order to replace expensive precious metal catalysts, the non-precious metal catalysts has also become hot spots, doped carbon nanomaterials is one of them. This paper presents an overview on the preparation and modification of carbon nonamaterials, and the impact on catalyst performance as these modified carbon nanomaterials are used as support in low-temperature fuel cells. This article also introduces the progress of doped carbon nanomaterials as oxygen reduction catalysts.
Key words:  low-temperature fuel cells    carbon nanomaterials    modification    support    oxygen reduction
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  O643.3  
  O613.71  
  TM911.4  
基金资助: *湖南省自然科学基金(13JJ5018); 国家级大学生创新训练计划(201510532035)
通讯作者:  董奇志:女,1967年生,硕士,副教授,硕士研究生导师,研究方向为材料电化学与电催化 E-mail:qzhdong67@163.com   
引用本文:    
董奇志, 万汉生, 曾文霞, 余淑敏, 郭灿城, 余刚. 改性碳纳米材料在低温燃料电池中的应用*[J]. CLDB, 2017, 31(9): 81-89.
DONG Qizhi, WAN Hansheng, ZENG Wenxia, YU Shumin, GUO Cancheng, YU Gang. Application of Modified Carbon Nanomaterials in Low-temperature Fuel Cells. Materials Reports, 2017, 31(9): 81-89.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.011  或          https://www.mater-rep.com/CN/Y2017/V31/I9/81
[1] Rajalakshmi N, Lakshmi N, Dhathathreyan K S.Nano titanium oxi-de catalyst support for proton exchange membrane fuel cells[J]. Int J Hydrogen Energy,2008,33(24):7521.
[2] Bennetto H P,Stirling J L,Tanaka K, et al.Anodic reactions in microbial fuel cells[J]. Biotechnol Bioeng,1983,25(2):559.
[3] Howe K S, Kendall K J.Transient performance of micro-tubular solid oxide fuel cells[J]. J Fuel Cell Sci Technol,2011,8(3):5223.
[4] Costamagna P, Srinivasan S.Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects[J]. J Power Sources,2001,102(s1-2): 242.
[5] Ren X, Zelenay P, Thomas S, et al.Recent advances in direct metha-nol fuel cells at Los Alamos National Laboratory[J]. J Power Sources,2000,86(1-2):111.
[6] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345.
[7] Steele B C H. Material science and engineering: The enabling technology for the commercialisation of fuel cell systems[J]. J Mater Sci,2001,36(5):1053.
[8] Song C.Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century[J]. Catal Today,2002,77(1-2):17.
[9] Antolini E.Carbon supports for low-temperature fuel cell catalysts[J]. Appl Catal B:Environ,2009,88(1-2):1.
[10] Ralph T R, Hogarth M P.Catalysis for low temperature fuel cells[J]. Platinum Met Rev, 2002, 46(3):117.
[11] Kinoshita K.Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes[J].J Electrochem Soc,1990,137(3):845.
[12] Yahikozawa K, Fujii Y, Matsuda Y, et al.Electrocatalytic properties of ultrafine platinum particles for oxidation of methanol and formic acid in aqueous solutions[J]. Electrochim Acta, 1991,36(5-6):973.
[13] Kabbabi A, Gloaguen F, Andolfatto F, et al.Particle-size effect for oxygen reduction and methanol oxidation on Pt/C inside a proton-exchange membrane[J].J Electroanal Chem,1994, 373(1-2):251.
[14] Yu X, Ye S.Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst[J].J Power Sources,2007,172(1):133.
[15] Vander Wal R L, Ticich T M, Curtis V E. Substrate-support inte-ractions in metal-catalyzed carbon nanofiber growth[J]. Carbon,2001,39(15):2277.
[16] Augustine R L,Tanielyan S K.Enantioselective heterogeneous catalysis. 2. 1, Examination of the formation of the individual (R) and (S) lactates in the cinchonidine modified platinum hydrogenation of pyruvate[J]. J Mol Catal A Chem,1996,112(1):93.
[17] Jha N, Leela Mohana Reddy A, Shaijumon M M, et al.Pt-Ru/multi-walled carbon nanotubes as electrocatalysts for direct methanol fuel cell[J]. Int J Hydrogen Energy,2008,33(1):427.
[18] Yang Wei, Chen Shengzhou, Zou Hanbo, et al.Progress in nitrogen-doped non-noble catalysts for oxygen reduction[J].Chem Ind Eng Progress,2010,29(11):2085(in Chinese).杨伟, 陈胜洲, 邹汉波, 等. 氮掺杂非贵金属氧还原催化剂研究进展[J].化工进展,2010, 29(11):2085.
[19] Kinoshita K.Carbon: Electrochemical and physico chemical properties[M]. New York:John Wiley and Sons,1988.
[20] Pyun S I,Lee E J,Kim T Y, et al.Role of surface oxides in corrosion of carbon black in phosphoric acid solution at elevated temperature[J]. Carbon,1994,32(1),155.
[21] Wang M, Xu F, Liu Q, et al.Enhancing the catalytic performance of Pt/C catalysts using steam-etched carbon blacks as a catalyst support[J]. Carbon,2011,49(1):256.
[22] Wang M, Xu F, Xie J.Enhanced carbon corrosion resistance for FEFC Pt/C catalysts using steam-etched carbon blacks as a catalyst support[J]. Electrochim Acta,2012,63:295.
[23] Yasuda K, Nishimura Y.The deposition of ultrafine platinum particles on carbon black by surface ion exchange—Increase in loading amount[J]. Mater Chem Phys,2003,82(3):921.
[24] Xu F, Wang M, Liu Q, et al.Investigation of the carbon corrosion process for polymer electrolyte fuel cell using a rotating disk electrode technique[J]. J Electrochem Soc,2010,157(8):B1138.
[25] Sun X, Zhang Y, Song P, et al.Fluorine-doped carbon blacks: Highly efficient metal-free electrocatalysts for oxygen reduction reaction[J]. ACS Catal,2013,3(8):1726.
[26] Jia N, Wang Z, Yang G, et al.Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine[J]. Electrochem Commun, 2007,9(2):233.
[27] Jun S, Joo S H, Ryoo R, et al.Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc,2000,122(43):10712.
[28] Umar A, Rahman M M, Al-Hajry A, et al.Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures[J]. Talanta,2009,78(1):284.
[29] Zhou M, Guo J, Guo L,et al.Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system[J]. Anal Chem,2008,80(12):4642.
[30] Walcarius A.Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials[J]. Comptes Rendus Chimie,2005,8(3):693.
[31] Adekunle A S, Ozoemena K I.Electrocatalytic oxidation of diethy-laminoethanethiol and hydrazine at single-walled carbon nanotubes modified with prussian blue nanoparticles[J]. Electroanalysis,2010,22(21):2519.
[32] Liang C, Dai S.Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J Am Chem Soc,2006,128(16):5316.
[33] Bruno M M, Petruccelli M A, Viva F A, et al.Mesoporous carbon supported PtRu as anode catalyst for direct methanol fuel cell: Pola-rization measurements and electrochemical impedance analysis of mass transport[J]. Int J Hydrogen Energy,2013,38(10):4116.
[34] Arbizzani C, Beninati S, Manferrari E, et al.Cryo and xerogel carbon supported PtRu for DMFC anodes[J]. J Power Sources,2007,172(2):578.
[35] Qi J,Jiang L H,Tang Q W,et al.Synthesis of graphitic mesoporous carbons with differentsurface areas and their use in direct methanol fuel cells[J]. Carbon,2012,50(8):2824.
[36] Lee H I, Joo S H, Kim J H, et al.Ultrastable Pt nanoparticles supported on sulfur-containing ordered mesoporous carbon via strong metal-support interaction[J]. J Mater Chem,2009,19:5934.
[37] Salgado J R C, Quintana J J,Calvillo L, et al.Carbon monoxide and methanol oxidation at platinum catalysts supported on ordered mesoporous carbon: The influence of functionalization of the support[J]. Phys Chem Chem Phys ,2008,10(45):6796.
[38] Guo Y X, He J P, Wang T, et al.Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon[J]. J Power Sources,2011,196(22):9299.
[39] Liu R L, Wu D Q, Feng X L, et al.Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J].Angew Chem,2010,49(14):2565.
[40] Lu J, Bo X, Wang H, et al.Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochim Acta, 2013,108(1):10.
[41] Iijima S.Helical microtubules of graphic carbon[J]. Nature,1991,354(6348):56.
[42] Yin S B, Zhu Q Q, Qiang Y H, et al.Functionalized carbon nanotubes as Pt catalyst supports in methanol oxidation[J].Chin J Catal,2012,33(2):290.
[43] Murata S,Imanishi M,Hasegawa S, et al.Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. J Power Sources,2014,253:104.
[44] Hoa L Q, Vestergaard M C, Yoshikawa H, et al.Functionalized multi-walled carbon nanotubes as supporting matrix for enhanced ethanol oxidation on Pt-based catalysts[J]. Electrochem Commun,2011,13(7):746.
[45] Cheng Y, Jiang S P.Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells[J]. Electrochim Acta,2013,99:124.
[46] Liu Z W, Shi Q Q, Peng F, et al.Pt supported on phosphorus-doped carbon nanotube as an anode catalyst for direct methanol fuel cells[J].Electrochem Commun,2012,16(1):73.
[47] Chen Z, Higgins D, Chen Z.Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction[J]. Electrochim Acta,2010,55(16):4799.
[48] Lefèvre M, Proietti E, Jaouen F, et al.Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science,2009,324(5923):71.
[49] Gong K, Du F, Xia Z, et al.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760.
[50] Geim A K, Novoselov K S.The rise of graphene[J]. Nat Mater,2007,6(3):183.
[51] Chen D, Tang L H, Li J H.Graphene-based materials in electrochemistry[J].Chem Soc Rev, 2010,39(8):3157.
[52] Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage applications[J]. J Power Sources,2011,196(11):4873.
[53] Yoo E J, Okata T, Akita T, et al.Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J]. Nano Lett,2009,9(6):2255.
[54] Seger B, Kamat P V.Electrocatalytically active graphene-platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells[J]. J Phys Chem C,2009,113(19):7990.
[55] Novoselov K S, Geim A K, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666.
[56] Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B,2006,110(17):8535.
[57] Li Y F, Zhou Z, Shen P W, et al.Structural and electronic properties of graphane nanoribbons[J].The J Phys Chem C,2009,113(33):15043.
[58] Chen X M, Su B Y, Wu G H, et al.Platinum nanoflowers supported on graphene oxide nanosheets: Their greensynthesis, growth mechanism, and advanced electrocatalytic properties formethanol oxi-dation[J].J Mater Chem,2012,22(22):11284.
[59] Brodie B C. Sur le poids atomique du graphite[J].Annales de Chimie et de Physique,1860,59:466.
[60] Staudenmaier L. Verfahren zur darstellung der graphitsäure[J]. Eur J Inorg Chem,1898,31(2): 1481.
[61] Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc,1958, 80(6):1339.
[62] Dong L, Gari R R S, Li Z, et al. Graphene-supported platinum and platinum-ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation[J]. Carbon, 2010,48(3):781.
[63] Hsieh S H, Hsu M C, Liu W L, et al.Study of Pt catalyst on graphene and its application to fuel cell[J]. Appl Surf Sci,2013,277(4):223.
[64] Wietecha M S, Zhu J, Gao G, et al.Platinum nanoparticles anchored on chelating group-modified graphene for methanol oxidation[J]. J Power Sources,2012,198(1):30.
[65] Huang H, Chen Q, He M, et al.A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward methanol oxidation[J]. J Power Sources,2013,239:189.
[66] Xin Y, Liu J, Jie X, et al.Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts[J]. Electrochim Acta, 2012,60:354.
[67] Bai J, Zhu Q, Lv Z, et al.Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions[J]. Int J Hydrogen Energy,2013,38(3):1413.
[68] Zhang L P, Xia Z H.Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells[J]. J Phys Chem C,2011,115(22):11170.
[69] Zhong Y L, Mo Z Y, Yang L J, et al.Application of modified graphene for cathode catalysts in fuel cells[J].Progress Chem,2013,25(05):717(in Chinese).钟轶良, 莫再勇, 杨莉君,等. 改性石墨烯用作燃料电池阴极催化剂[J].化学进展,2013, 25(05):717.
[70] Qu L, Liu Y, Baek J, et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano,2010,4(3):1321.
[71] Liang J, Jiao Y, Jaroniec M, et al.Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with sy-nergistically enhanced performance[J]. Angew Chem Int Ed,2012,51(46):11496.
[72] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites[J]. Carbon,2009,47(1):2.
[73] Sebastián D, Lázaro M J, Suelves I, et al.The influence of carbon nanofiber support properties on the oxygen reduction behavior in proton conducting electrolyte-based direct methanol fuel cells[J].Int J Hydrogen Energy,2012,37(7):6253.
[74] Duan Q, Wang B, Wang J, et al.Fabrication of a carbon nanofiber sheet as a micro-porous layer for proton exchange membrane fuel cells[J]. J Power Sources,2010,195(24):8189.
[75] Hang B T, Thang D H, Kobayashi E.Fe/carbon nanofiber compo-site materials for Fe-air battery anodes[J]. J Electroanal Chem,2013,704:145.
[76] Wiselin J, Suseela S B, Jalaja B V, et al.A low cost carbon nanofiber based spiral inductor: Inference and implementation[J].Adv Mater Sci Eng,2014(2014):1125.
[77] Rand E, et al.A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid[J]. Biosensors Bioelectron,2013,42C(1):434.
[78] Wu R, Xue Y, Qian X, et al.Pt nanodendrites anchored on bamboo-shaped carbon nanofiber arrays as highly efficient electrocatalyst for oxygen reduction reaction[J]. Int J Hydrogen Energy, 2013,38(36):16677.
[79] Á lvarez G, Alcaide F, et al. Electrochemical performance of low temperature PEMFC with surface tailored carbon nanofibers as catalyst support[J]. Int J Hydrogen Energy, 2012,37(1):393.
[80] Yin J, Qiu Y J, Yu J J.Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction[J]. J Electroanal Chem,2013,702(2):56.
[81] Stankovich S, Dikin D A, Piner R D, et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558.
[82] Yang S, Shen C, Lu X, et al.Preparation and electrochemistry of graphene nanosheets-multiwalled carbon nanotubes hybrid nanomaterials as Pd electrocatalyst support for formic acid oxidation[J]. Electrochim Acta,2012,62(1):242.
[83] Li Y, Li Y, Zhu E, et al.Stabilization of high-performance oxygen reduction reaction Pt electrocatalyst supported on reduced graphene oxide/carbon black composite[J]. J Am Chem Soc,2012,134(30):12326.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[3] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[4] 屈沅治, 张蝶, 兰雅婧, 任晗, 刘阔, 黄宏军, 梁本亮, 颜鲁婷. 水基钻井液用多元协同纳米润滑剂的研究进展[J]. 材料导报, 2025, 39(2): 23090016-6.
[5] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[6] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[7] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[8] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[9] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[10] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[11] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[12] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[13] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[14] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[15] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed