Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 44-51    https://doi.org/10.11896/j.issn.1005-023X.2017.023.005
  专题栏目:超高性能混凝土及其工程应用 |
超高强水泥基材料的力学及耐久性能*
杜丰音, 金祖权, 于泳
青岛理工大学土木工程学院,青岛 266033
A Review on the Mechanics and Durability in Ultra-high Strength Cement-based Composites Materials
DU Fengyin, JIN Zuquan, YU Yong
School of Civil Engineering,Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 1339KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高强水泥基材料作为一种高性能建筑材料,在建筑工程领域已得到了广泛的关注和应用。简要介绍了超高强水泥基材料的发展历史、制备的基本途径和性能实现的基本原理,并且对近年来国内外学者关于超高强水泥基材料力学性能和耐久性能的研究进展进行了综述。综述内容包括:超高强水泥基材料的抗压强度、抗折强度、弹性模量、泊松比、应力应变曲线,以及超高强水泥基材料的抗渗、抗冻性能和碱骨料反应风险。在对已有文献的综述基础上,简要分析了纤维及养护制度对超高强水泥基材料性能的影响,并提出了超高强水泥基材料工程化的关键措施。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜丰音
金祖权
于泳
关键词:  超高强水泥基材料  力学性能  耐久性  钢纤维    
Abstract: Ultra-high strength cement-based composites materials (UHSCC) as a new type of high-performance building materials, in the field of construction has provoked a wide range of attention and application. In this paper, an extensive literature review has been conducted on the developments of UHSCC, and the fundamental of materials preparations and performance index. The compressive strength, flexural strength, elastic modulus, Poisson��s ratio and stress-strain curve of UHSCC are introduced in detail. We access the durability of UHSCC after complying from various research and field studies around the world, i.e. water or gas absorption capacity, chloride ions penetration property, resistance of freezing-thawing cycles and the expansion risk due to alkali-silica reactivity. The literature review reveals the influence of fiber dosage and curing regimes on the properties of UHSCC in brief, and puts forward the key measures for the promotion of UHSCC in engineering.
Key words:  ultra-high strength cement-based composites    mechanical performance    durability    steel fiber
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51378269; 51678318)
通讯作者:  金祖权:男,1977年生,博士,教授,博士研究生导师,研究方向为高性能混凝土制备及性能 E-mail:jinzuquan@126.com   
作者简介:  杜丰音:女,1994年生,硕士研究生,研究方向为海洋环境下混凝土耐久性 E-mail:yzdufengyin@126.com
引用本文:    
杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
DU Fengyin, JIN Zuquan, YU Yong. A Review on the Mechanics and Durability in Ultra-high Strength Cement-based Composites Materials. Materials Reports, 2017, 31(23): 44-51.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.005  或          https://www.mater-rep.com/CN/Y2017/V31/I23/44
1 Aitcin P C. Cement of yesterday and today, concrete of tomorrow[J]. Cem Concr Res, 2000, 30(6):1349.
2 吴中伟,廉慧珍. 高性能混凝土[M].北京: 中国铁道出版社, 1999:1.
3 冯乃谦. 高性能混凝土结构[M]. 北京: 机械工业出版社,2004:14.
4 Aitcin P C. High-performance concrete[M]. London: E&.FN Spon, 2004:21.
5 Shi C J, Mo Y L. High-performance construction materials-science and applications[M].Washington D C: World Scientific Publishing Company,2008:7.
6 胡曙光. 先进水泥基复合材料[M]. 北京: 科学出版社,2009:13.
7 Walraven J. High performance concrete:A material with a large potential[J]. J Adv Concr Technol, 2009,7(2):145.
8 Brooks J, Wainwright P. Properties of ultra-high strength concrete containing a superplastieizer[J]. Mag Corner Res, 1983,125(35):205.
9 Richard P,Cheyrezy M.Reactive powder concretes with high ductility and 200-800MPa compressive strength[J]. ACI Special Publication,1994,144(24):507.
10 Richard P,Cheyrezy M.Composition of reactive powder concrete[J]. Cem Concr Res, 1995,25(7):1501.
11 Marcel C, Vincent M. Microstructure analysis of RPC[J]. Cem Concr Res, 1995,25:1491.
12 Larrard D F, Sedran T. Optimization of ultra-high-performance concrete by the use of a packing mode[J]. Cem Concr Res, 1994,24(6):997.
13 Shi C, Wu Z, Xiao J, et al. A review on ultra-high performance concrete: Part1. Raw materials and mixture design[J]. Construction Building Mater, 2015,101:741.
14 蒲心诚.超高强高性能混凝土[M].重庆: 重庆大学出版社, 2004:3.
15 蒲心诚,甘昌成,等. 碱矿渣混凝土的研制与应用前景[J].陈剑雄,译.国外建筑科学, 1994(1):29.
16 Leng F G, Feng N Q. Experimental study on the effect of slag content on strength and durability of high strength and high perfor-mance concrete [J]. China Academic J Electronic Publishing House, 2000(1):14(in Chinese).
冷发光, 冯乃谦. 矿渣掺量对高强高性能混凝土强度和耐久性影响的试验研究[J]. 中国建材科技, 2000(1):14.
17 Pu X C. Study on influencing factors of strength and fluidity of 100-150 MPa ultra-high strength and high performance concrete[J].Concrete,1999(1):8(in Chinese).
蒲心诚. 100-150 MPa超高强高性能混凝土的强度与流动性影响因素研究[J].混凝土,1999(1):8.
18 Pu X C. Research and application prospect of 150 MPa ultra-high strength and high performance concrete[J].Concrete,1993(3):13(in Chinese).
蒲心诚. 150 MPa超高强高性能混凝土研究与应用前景[J].混凝土, 1993(3):13.
19 Pu X C. The development and prospect of ultra high strength high performace concrete [J]. China Concr Cem Products, 2008(2):1(in Chinese).
蒲心诚. 特超强高性能混凝土的研制与展望 [J]. 混凝土与水泥制品, 2008(2):1.
20 Zhang D S, Yan X W, Peng C F. Study on 120 MPa ultra-high strength cement-based materials [J]. J Northwestern Polytechnical University, 2003,21(2):187(in Chinese).
张德思, 颜学武, 彭晨峰. 120 MPa超高强水泥基材料的研究[J]. 西北工业大学学报,2003,21(2):187.
21 Zhang D S, Li Z H, Chen H F, et al. On designing and implementing for Chinese use 150 MPa ultra-high-strength cement-based composites[J]. J Northwestern Polytechnical University, 2004,22(3):309(in Chinese).
张德思, 李钟华, 陈会凡,等. 150MPa超高强水泥基材料的研究[J]. 西北工业大学学报, 2004,22(3):309.
22 He F, Huang Z Y. Study on the preparation technology of 200—300 MPa reactive powder concrete [J].China Concr Cem Products, 2000(4):3(in Chinese).
何峰, 黄政宇. 200-300 MPa活性粉末混凝土(RPC)的配制技术研究[J]. 混凝土与水泥制品, 2000(4):3.
23 Lankard D R. Slurry infiltrated fiber concrete (SIFCON): Properties and applications[J]. Mrs Online Proceedings Library Archive, 1984,5:42.
24 程庆国,高路彬,等.钢纤维混凝土理论及应用[M]. 北京: 中国铁道出版社,1999:24.
25 Jun P, Taek K, Tae K,et al. Influence of the ingredients on the compressive strength of UHPC as afundamental study to optimize the mixing proportion[C]∥Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete. Kassel, Germany, 2008:105.
26 Zhong S Y, Wang Y M, Gao H Q. Effect of fibers on strength of self-compacting reactive powder concrete [J].J Building Mater, 2008, 11(5):522(in Chinese).
钟世云, 王亚妹, 高汉青. 纤维对自密实活性粉末混凝土强度的影响[J].建筑材料学报, 2008,11(5):522.
27 Abbas S, Soliman A, Nehdi M. Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages[J].Construction Building Mater, 2015,75:429.
28 Reda M, Shrive G, Gillott E. Microstructural investigation of innovative UHPC[J].Cem Concr Res,1999, 29(3):323.
29 Schmidt M, Fehling E, Teichmann T, et al. Ultra-high perfor-mance concrete: Perspective for the precast concrete industry[J]. Concr Plant Precast Technol, 2003, 69(3):16.
30 Skazlic M, Bjegovic D, Serdar M. Influence of test specimens geo-metry on compressive strength of ultra-high performance concrete[C]∥Proceedings of the 2nd International Symposium on Ultra High Performance Concrete. Kassel, Germany, 2008: 295.
31 Graybeal B, Davis M. Cylinder or cube: Strength testing of 80-200 MPa (11.6-29 ksi) ultra-high performance fibre-reinforced concrete[J].ACI Mater J,2008,105(6):603.
32 Wu Y H, He Y B, Yang Y H. Investigation on RPC200 mechanical performance[J].J Fujian University (Natural Science), 2003, 31(5):598(in Chinese).
吴炎海, 何雁斌, 杨幼华.活性粉末混凝土(RPC200)的力学性能[J]. 福州大学学报(自然科学版), 2003, 31(5):598.
33 陈肇元.高强混凝土结构技术规程(CECS104:99)介绍(一)[J].建筑结构, 2001,31(1):63.
34 林小松,杨果林.钢纤维高强与超高强混凝土[M].北京:科学出版社, 2002:68.
35 Orgass M, Klug Y. Steel fibre-reinforced ultra-high strength concretes[C]∥Proceedings of the International Symposium on ultra-High Performance Concrete.Kassel,Germany,2004: 637.
36 Jiao C J, Sun W, Gao P Z, et al. Study on mechanical properties of steel fiber reinforced high-strength concrete[J]. China Concr Cem Products, 2005(3):35(in Chinese).
焦楚杰, 孙伟, 高培正,等. 钢纤维高强混凝土力学性能研究[J]. 混凝土与水泥制品, 2005(3):35.
37 Cao F, Tan W Z. Preliminary study of ultra-high performance fibre-reinforced concrete[J].Ind Construction, 1999, 29(6):1(in Chinese).
曹峰, 覃维祖. 超高性能纤维增强混凝土初步研究[J].工业建筑, 1999, 29(6):1.
38 Liu S, Li L, Feng J. Study on mechanical properties of reactive powder concrete[J]. J Civil Eng Constr,2012,1(1):6.
39 Nguyen D, Kim D, Ryu G,et al. Size effect on flexural behaviour of ultra-high performance hybrid fibre-reinforced concrete[J].Compo-sites, 2013,45:1104.
40 Doo-Yeol Yoo, Soonho Kim, Gi-Joon Park.Effects of fiber shape, aspect ratio, and volume fraction on ?exural behavior of ultra-high-performance fiber-reinforced cement composites[J]. Compos Structures, 2017,174:375.
41 Ahmed Al-Tikrite, Muhammad N S Hadi. Mechanical properties of reactive powder concrete containing industrialand waste steel fibres at different ratios under compression[J].Construction Building Mater, 2017,145:1024.
42 Lai J, Sun W. Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cem Concr Res. 2009,39 (11):1044.
43 Doo-Yeol Yoo, Nemkumar Banthia Hadi. Mechanical properties of ultra-high-performance fiber-reinforcedconcrete: A review[J]. Cem Concr Compos, 2016,73:267.
44 Bonneau O, Lachemi M, Dallaire E, et al. Mechanical properties and durability of two industrial reactive powder concretes[J].ACI Mater J, 1997,94(4):286.
45 Wang Z J,Pu X C. Experimental study on the uniaxial compression properties and the stress-strain curves of UHS&HPC[J].J Chongqing Jianzhu University,2000,22(s1):31.
王志军, 蒲心诚. 超高强混凝土单轴受压性能及应力应变曲线的试验研究[J]. 重庆建筑大学学报,2000, 22(s1):31.
46 ACI 363R-92.State-of-the-art report on high-strength concrete[R].USA,1997.
47 Ma J, Schneider H. Properties of ultra-high performance concrete[J].Leipzig Annual Civil Eng Rep (LACER), 2002,7:25.
48 Sritharan S, Bristow B, Perry V. Characterizing an ultra-high performance material for bridge applications under extreme loads[C]∥Proceedings of the 3rd International Symposium on High Perfor-mance Concrete. Orlando, FL,2003:1465.
49 Ma J, Orgass M, Dehn F,et al. Comparative investigations on ultra-high performance concrete with and without coarse aggregates[C]∥Proceedings of the International Symposium on Ultra-High Performance Concrete. Kassel, Germany, 2004.
50 Graybeal B. Compressive behaviour of ultra-high performance fibre-reinforced concrete[J].ACI Mater J,2007,104(2):146.
51 Herold G, Muller H. Measurement of porosity of ultra-high strength fibre reinforced concrete[C]∥Proceedings of the International Symposium on Ultra-High Performance Concrete.Kassel, Germany, 2004: 685.
52 Roux N, Andrade C, Sanjuan M. Experimental study of durability of reactive powder concretes[J]. J Mater Civil Eng, 1996,8(1):1.
53 Wang D, Shi C, Wu Z, et al. A review on ultra high performance concrete: PartII. Hydration, microstructure and properties[J].Construction Building Mater, 2015,96:368.
54 Wang W, Liu J, Agostini F, et al.Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging[J]. Cem Concr Res, 2014, 55(1):1.
55 Schmidt M, Fehling E. Ultra-high-performance concrete: Research, development and application in Europe[C]∥7th Internatio-nal Symposium on Utilization of High Strength High Performance Concrete. 2005.
56 Heinz D, Ludwig H. Heat treatment and the risk of DEF delayed ettringite formation in UHPC[C]∥Proceedings of the International Symposium on UHPC. Kassel, Germany,2004.
57 Cwirzen A. The effect of the heat-treatment regime on the properties of reactive powder concrete[J].Adv Cem Res, 2007, 19(1):25.
58 Scheydt C, Muller S. Microstructure of ultra high performance concrete (UHPC) and its impact on durability[C]∥Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 2012.
59 Franke L, Schmidt H, Deckelmann G. Behavior of ultra-high performance concrete with respect to chemical attack[C]∥Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete. Kassel, Germany,2008:453.
60 Gao R, Liu Z, Zhang L,et al. Static properties of reactive powder concrete beams[J].Key Eng Mater, 2006,302(303): 521.
61 ASTM C1202. Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration[S]. West Conshohocken, PA: ASTM, 2010.
62 Schmidt D, Dehn F, Urbonas L. Fire resistance of ultra-high performance concrete (UHPC)—Testing of laboratory samples and co-lumns under load[C]∥ Proceedings of the International Symposium on UHPC. Kassel, Germany,2004.
63 Pierard J, Cauberg N. Evaluation of durability and cracking tendency of ultra-high performance concrete[C]∥Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. London, 2009.
64 Juanhong L, Shaomin S, Lin W. Durability and micro-structure of reactive powder concretep[J]. J Wuhan University of Technology Material, 2009,24(3):506.
65 Pierard J, Dooms B, Cauberg N. Evaluation of durability parameters of UHPC using accelerated lab tests[C]∥Proceedings of the 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 2012:371.
66 Thomas M, Green B, O’Neal E,et al. Marine performance of UHPC at TreatIsland[C]∥Proceedings of the 3rd International Sympo-siumon UHPC and Nanotechnology for High Performance Construction Materials. Kassel, Germany, 2012:365.
67 Graybeal B A. Material property characterization of ultra-high performance concrete[R]. FHWA-HRT-06-103, U.S. Department of Transportation, 2006:887.
68 Ahlborn T, Peuse E, Misson D, et al. Durability and strength characterization of ultra-high performance concrete under variable curing regimes[C]∥Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete. Kassel, Germany,2008:197.
69 Scheydt J, Muller H, Herold G. Long term behaviour of ultra-high performance concrete under the attack of chlorides and aggressive waters[C]∥Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete. Kassel, Germany,2008:231.
70 Bonneau O, Vernet C, Moranville M, et al. Characterization of the granular packing and percolation threshold of reactive powder concrete[J]. Cem Concr Res, 2000,30(12):1861.
71 Vernet P. Ultra-durable concretes: Structure at the micro-and nano-scale[J].Mater Res Soc, 2004,29(5):324.
72 Cwirzen A, Penttala V, Cwirzen K. The effect of heat treatment on the salt freeze-thaw durability of UHSC[C]∥Proceedings of the 2nd International Symposium on Ultra High Performance Concrete. Kassel, Germany,2008:221.
73 Shaheen E, Shrive N. Optimization of mechanical properties and durability of reactive powder concrete[J].ACI Mater J, 2006,103(6): 444.
74 Magureanu C, et al. Mechanical properties and durability of ultra-high performance concrete[J].ACI Mater J, 2012,109:177.
75 Moser B, Pfeifer C, Stark J. Durability and microstructural deve-lopment during hydration in ultra-high performance concrete[C]∥ Creep, Shrinkage and Durability Mechanics of Concrete and Concrete Structures. London, UK, 2009:87.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[13] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed