Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 6-10    https://doi.org/10.11896/j.issn.1005-023X.2017.020.002
  材料研究 |
石墨烯-聚(苯乙烯-co-丙烯酸丁酯)复合材料的力学及形状回复性能*
张可可, 杨帅, 张亚楠, 王雅琦, 曾庆祥, 刘芳颖, 张威, 张大伟
东北林业大学材料科学与工程学院,哈尔滨 150040
Study on the Mechanical Properties and Shape Recovery Capability of Graphene-Poly(styrene-co-butyl acrylate) Composites
ZHANG Keke, YANG Shuai, ZHANG Yanan, WANG Yaqi, ZENG Qingxiang, LIU Fangying, ZHANG Wei, ZHANG Dawei
Institute of Materials Science and Engineering, Northeast Forestry University, Harbin 150040
下载:  全 文 ( PDF ) ( 1581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Hummers氧化法制备氧化石墨烯,再以水合肼为还原剂制得石墨烯。用异氰酸酯处理石墨烯以对其进行改性。以苯乙烯和丙烯酸丁酯作为形状记忆聚合物的共聚单体,将石墨烯和经异氰酸酯处理的石墨烯分别加入单体溶液中,采用自由基聚合的方法获得了不同石墨烯含量的石墨烯-聚(苯乙烯-co-丙烯酸丁酯)形状记忆复合材料。DMA、力学性能测试表明,掺杂石墨烯或经异氰酸酯处理的石墨烯后,形状记忆聚合物的储能模量和玻璃化转变温度均降低;随石墨烯含量的增加,复合材料的拉伸模量降低;在相同温度下,用经异氰酸酯处理的石墨烯制得的复合材料的形状回复能力普遍大于用相同含量的未处理石墨烯制得的复合材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张可可
杨帅
张亚楠
王雅琦
曾庆祥
刘芳颖
张威
张大伟
关键词:  石墨烯  苯乙烯  丙烯酸丁酯  共聚物  形状记忆复合材料  力学性能  形状回复    
Abstract: The present work aims at the fabrication and mechanical & shape recovery performances of a graphene-poly(styrene-co-butyl acrylate) composite. First, the graphene oxide was prepared by Hummers method, and then reduced by using hydrazine hydrate to prepare graphene. Secondly, the graphene and isocyanate-treated graphene were separately added into a mixed solution containing styrene and butyl acrylate which served as monomers, and a free radical polymerization process was employed to fabricate a series of shape memory composites (graphene-poly(styrene-co-butyl acrylate)) differed in graphene content. We then characterized and estimated the shape memory composites’ performances by applying DMA test and mechanical properties tests, and the results indicated that both the additions of graphene and isocyanate-treated graphene contribute to the declines of both storage modulus and glass transition temperature of the shape memory composites. An inverse correlation between graphene content and tensile modulus of the composites was also observed. At the same temperature, the shape recovery capability of the composites fabricated with isocyanate-treated graphene is generally better than that with untreated graphene (under equal graphene content).
Key words:  graphene    styrene    butyl acrylate    copolymer    shape memory composite    mechanical property    shape recovery
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB332  
基金资助: *中央高校基本科研业务费专项资金(2572015CB02);黑龙江省自然科学基金(E201351);黑龙江省博士后基金(LBH-Z13010);东北林业大学大学生科研训练项目(KY2015010)
作者简介:  张可可:女,1992年生,硕士研究生,主要研究方向为石墨烯及壳聚糖材料 E-mail:1053907043@qq.com 张大伟:通讯作者,男,1975年生,博士,副教授,主要从事生物质材料及其复合材料的研究 E-mail:zhangdawei@nefu.edu.cn
引用本文:    
张可可, 杨帅, 张亚楠, 王雅琦, 曾庆祥, 刘芳颖, 张威, 张大伟. 石墨烯-聚(苯乙烯-co-丙烯酸丁酯)复合材料的力学及形状回复性能*[J]. 《材料导报》期刊社, 2017, 31(20): 6-10.
ZHANG Keke, YANG Shuai, ZHANG Yanan, WANG Yaqi, ZENG Qingxiang, LIU Fangying, ZHANG Wei, ZHANG Dawei. Study on the Mechanical Properties and Shape Recovery Capability of Graphene-Poly(styrene-co-butyl acrylate) Composites. Materials Reports, 2017, 31(20): 6-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.002  或          https://www.mater-rep.com/CN/Y2017/V31/I20/6
1 Kumpfer J R, Rowan S J. Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers[J]. J Am Chem Soc, 2011,133(32):12866.
2 Schmidt A M. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles[J]. Macromol Rapid Commun, 2006,27(14):1168.
3 Fei G X, Li G, Wu L S, et al. A spatially and temporally controlled shape memory process for electrically conductive polymer-carbon nanotube composites[J]. Soft Matter, 2012,8(19):5123.
4 Kumar U K, Kratz K, Heuchel M, et al. Shape-memory nanocomposites with magnetically adjustable apparent switching temperatures[J]. Adv Mater, 2011,23(36):4157.
5 Luo X, Mather P T. Conductive shape memory nanocomposites for high speed electrical actuation[J]. Soft Matter, 2010,6(10):2146.
6 Correia C O, Caridade S G, Mano J F. Chitosan membranes exhibiting shape memory capability by the action of controlled hydration[J]. Polymers, 2014,6(4):1178.
7 Leng J S, Lv H B, Liu Y J, et al. Shape memory polymers-A class of novel smart material[J]. MBS Bull, 2009,34(11):848.
8 Cai Y, Jiang J S, Liu Z W, et al. Magnetically-sensitive shape me-mory polyurethane composites crosslinked with multi-walled carbon nanotubes[J]. Composites Part A, 2013,53:16.
9 Yang B, Huang W M, Li C, et al. Effect of moisture on the thermomechanical properties of a polyurethane shape memory polymer[J]. Polymer, 2006,47(4):1348.
10Chen S J, Hu J L, Zhuo H T, et al. Two-way shape memory effect in polymer laminates[J]. Mater Lett, 2008,62(25):4088.
11Du H Y, Zhang J H. Shape memory polymer based on chemically cross-linked poly(vinyl alcohol) containing a small number of water molecules[J]. Colloid Polym Sci, 2010,288(1):15.
12Du H Y, Zhang J H. Solvent induced shape recovery of shape me-mory polymer based on chemically cross-linked poly(vinyl alcohol)[J]. Soft Matter, 2010,6(14):3370.
13Zhang D W, Liu Y J, Yu K, et al. Influence of cross-linking agent on thermomechanical properties and shape memory effect of styrene shape memory polymer[J]. Intell Mater Syst Struct, 2011,22(18):2147.
14Gómez-Navarro C, Burghard M, Kem K. Elastic properties of chemically derived single graphene sheets[J]. Nano Lett, 2008,8(7):2045.
15Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nat Mater, 2010,9(7):555.
16Jang B Z, Liu C, Neff D, et al. Graphene surface-enabled lithium ion-exchanging cells: Next-generation high-power energy storage devices[J]. Nano Lett, 2011,11(9):3785.
17Teweldebrhan D, Balandin A A. Modification of graphene properties due to electron-beam irradiation[J]. Appl Phys Lett, 2009,94(1):013101.
18Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958,80(6):1339.
19Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558.
20Chen Y B, Chen Y S, Ouyang Q,et al. Study on thermal properties of PAN/graphene oxide nanocomposites[J]. China Synth Fiber Ind, 2012,35(6):1(in Chinese).
陈宜波, 陈友汜, 欧阳琴, 等. PAN/氧化石墨烯纳米复合材料的热性能研究[J]. 合成纤维工业, 2012, 35(6):1.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed