Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.020.001
  研究快报 |
具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*
娄冬冬1, 张丽莎1,2, 王海风1, 陈志钢1
1 东华大学纤维材料改性国家重点实验室,上海 201620;
2 东华大学环境科学与工程学院,上海 201620
Synthesis of Three-dimensional Network-structured g-C3N4/rGO/Pd Composites with Excellent Visible-light Photocatalytic Performances
LOU Dongdong1, ZHANG Lisha1,2, WANG Haifeng1, CHEN Zhigang1
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620;
2 College of Environmental Science and Engineering, Donghua University, Shanghai 201620
下载:  全 文 ( PDF ) ( 2334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)已经被认为是一种高效的非金属半导体光催化剂。为进一步优化其光催化性能,通过热解-水热两步法制备了三维网状结构的g-C3N4/还原氧化石墨烯(rGO)/钯纳米颗粒(Pd NPs)复合材料。该复合材料由大量超薄片组成,而且薄片上有大量直径约为10 nm的Pd NPs。g-C3N4/rGO/Pd NPs复合材料展现了一个宽的可见光吸收(边~460 nm),其在460~800 nm波长范围内还有一个随波长增加的光吸收。经可见光(λ>400 nm)照射140 min后,g-C3N4/rGO/Pd NPs复合材料可降解90%罗丹明B(RhB)。此外,循环实验表明g-C3N4/rGO/Pd NPs复合材料具有良好的稳定性。因此,g-C3N4/rGO/Pd NPs复合材料有望成为一种高效稳定的光催化剂,在水污染处理领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
娄冬冬
张丽莎
王海风
陈志钢
关键词:  石墨相氮化碳  还原氧化石墨烯  钯纳米颗粒  光催化  可见光    
Abstract: Graphitic carbon nitride (g-C3N4) has been considered as an efficient metal-free semiconductor photocataltyst. To further improve its photocatalytic activity, we have prepared the three-dimensional network-structured g-C3N4/reduced graphene oxi-de (rGO)/palladium nanoparticles (Pd NPs) composites by the pyrolysis-hydrothermal two-step method. The composite consists of ultrathin sheets which are decorated with Pd NPs (diameter:~10 nm). g-C3N4/rGO/Pd NPs composite shows a broad absorption with an edge at ~460 nm and then an enhanced photoabsorption with the increase of wavelength (460—800 nm). The photocatalytic activity of g-C3N4/rGO/Pd NPs composites was measured by the degradation of RhB solution. Under the irradiation of visible-light (λ>400 nm), g-C3N4/rGO/Pd NPs composites can degrade 90% RhB in 140 min. In addition, the cycling experiment demonstrates that the composite possesses good photocatalytic stability. Therefore, g-C3N4/rGO/Pd NPs composites displays a potential as an efficient and stable photocatalyst for water-purification application.
Key words:  graphitic carbon nitride    reduced graphene oxide    palladium nanoparticles    photocatalysis    visible light
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB321  
基金资助: *国家自然科学基金(21477019);中央高校基本科研业务费专项资金;东华大学励志计划
作者简介:  娄冬冬:男,1989年生,硕士研究生,主要从事光催化材料合成及性能研究 E-mail:loudongdong1989@163.com 张丽莎:通讯作者,女,1980年生,副教授,主要从事新型光催化材料的开发与利用 E-mail:lszhang@dhu.edu.cn
引用本文:    
娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
LOU Dongdong, ZHANG Lisha, WANG Haifeng, CHEN Zhigang. Synthesis of Three-dimensional Network-structured g-C3N4/rGO/Pd Composites with Excellent Visible-light Photocatalytic Performances. Materials Reports, 2017, 31(20): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.001  或          https://www.mater-rep.com/CN/Y2017/V31/I20/1
1 Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chem Soc Rev, 2012,41(2):782.
2 Wang P F, Zhan S H, Xia Y G, et al. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocompo-site for high-performance photocatalytic water splitting [J]. Appl Catal B: Environ, 2017,207:335.
3 Du J, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano, 2011,5:590.
4 Chen X Y, Zhou Y, Liu Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light [J]. ACS Appl Mater Interfaces, 2012,4(7):3372.
5 Tian C G, Zhang Q, Wu A P, et al. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation [J]. Chem Commun, 2012,48(23):2858.
6 Xu Y, Zhao W W, Xu R, et al. Synthesis of ultrathin CdS nano-sheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution [J]. Chem Commun, 2013,49(84):9803.
7 Wu T, Zhou X G, Zhang H, et al. Bi2S3 nanostructures: A new photocatalyst [J]. Nano Res, 2010,3(5):379.
8 Liu J H, Zhang T K, Wang Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity [J]. J Mater Chem, 2011,21(38):14398.
9 Li S J, Zhang L S, Wang H L, et al. Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts [J]. Sci Rep, 2014,4:3978.
10Feng Xiping, Zhang Hong, Hang Zusheng. Peveloprment on photoeatalysis of g-C3N4 and modified g-C3N4[J]. J Funct Mater Devices, 2012,18(3):214(in Chinese).
冯西平, 张宏, 杭祖圣. g-C3N4及改性g-C3N4的光催化研究进展 [J]. 功能材料与器件学报, 2012,18(3):214.
11Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat Mater, 2009,8(1):76.
12Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? [J]. Chem Soc Rev, 2016,116(12):7159.
13Cui Y J, Ding Z X, Fu X Z, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis [J]. Angew Chem Int Ed, 2012,51(47):11814.
14Bai Y J, Lu B, Liu Z, et al. Solvothermal preparation of graphite-like C3N4nanocrystals [J]. J Cryst Growth, 2003,247(3-4):505.
15Zheng Y, Lin L H, Wang B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis [J]. Angew Chem Int Ed, 2015,54(44):12868.
16Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene [J]. Nat Nanotechnol, 2015,10(5):459.
17Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage [J]. Nat Nanotechnol, 2014,9(7):555.
18Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-graphene nanocompo-sites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? [J]. ACS Nano, 2010,4:7303.
19Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Phys Chem Chem Phys, 2011,13(7):2887.
20Zhang N, Yang M Q, Tang Z R, et al. CdS-graphene nanocompo-sites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation [J]. J Catal, 2013,303(7):60.
21Xiang Q J, Yu J G, Jaroniec M. Preparation and ehanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites [J]. J Phys Chem C, 2011,115(15):7355.
22Shiraishi Y, Kofuji Y, Kanazawa S, et al. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light [J]. Chem Commun, 2014,50(96):15255.
23Marschall R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Adv Funct Mater, 2014,24:2421.
24Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process [J]. ACS Nano, 2010,4:4324.
25Tong Z W, Yang D, Shi J F, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance [J]. ACS Appl Mater Interfaces, 2015,7(46):25693.
26Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide [J]. Angew Chem Int Ed, 2010,49(27):4707.
27Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon, 2008,46(14):1994.
28Chen Y, Tian G, Shi Y, et al. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity [J]. Appl Catal B: Environ, 2015,164:40.
29Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis [J]. Chem Soc Rev, 2013,42(16):6593.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[3] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[4] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[5] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[6] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[7] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[8] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[9] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[10] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[11] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[12] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[13] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[14] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[15] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed