Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 6-10    https://doi.org/10.11896/j.issn.1005-023X.2017.010.002
  材料研究 |
NiO层作为空穴传输层的钙钛矿太阳能电池的制备和性能研究*
王刚1,杨定明1,刘江2
1 西南科技大学材料科学与工程学院, 绵阳 621000;
2 中物院成都科学技术发展中心,成都绿色能源与绿色制造技术研发中心, 成都 610299
Preparation and Performance of Perovskite Solar Cells with NiO Films as Hole Transporting Layers
WANG Gang1, YANG Dingming1, LIU Jiang2
1 School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621000;
2 Chengdu Science and Technology Development Center of CAEP, Chengdu Green Energy and Green Manufacturing Technology R&D Center, Chengdu 610299
下载:  全 文 ( PDF ) ( 1250KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机-无机杂化钙钛矿太阳能电池因具有光吸收强、载流子扩散长度长等优点,近年来在光伏领域吸引了广泛的关注,其中,无机NiO薄膜在电池结构中作为空穴传输层已发展成为钙钛矿电池研究的重要方向。采用溶液旋涂法制备了NiO薄膜,系统优化了不同烧结温度和不同浓度条件下NiO薄膜对钙钛矿电池性能的影响。采用扫描电镜、X 射线衍射、紫外-可见分光光度计、电流-电压测试、光量子效率等方法分别观察和分析了NiO薄膜以及相应电池的光电性能。结果表明:溶液旋涂法制备的NiO薄膜具有良好的覆盖性、非常低的表面粗糙度,当制备NiO的预制溶液浓度为0.05 mol/L,NiO的烧结温度为500 ℃时,获得了最优的电池性能,最高电池转换效率为14.62%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王刚
杨定明
刘江
关键词:  NiO薄膜  钙钛矿  太阳能电池    
Abstract: Recently,organic-inorganic hybrid perovskite solar cell attracted extensive attentions in photovoltaic community due to its great advantages such as strong light absorption and long carrier diffusion length. The inorganic NiO thin film as the hole transport layer in perovskite solar cell has become an important subject. NiO thin films were prepared by spin coating. The effects of sintering temperature and precursor solution concentration on the properties of NiO thin films and the corresponding solar cells were studied. Scanning electron microscopy, X-ray diffraction, UV-Vis spectroscopy, current-voltage measurement, quantum efficiency were carried out to analysis the properties of NiO thin films and the corresponding solar cells. The results showed that the NiO thin films prepared by spin coating exhibits good coverage and a very low surface roughness. The best device could be obtained when the precursor solution concentration is 0.05 mol/L and the sintering temperature is 500 ℃. With the optimized preparation condition, a maximum power conversion efficiency of 14.62% was achieved.
Key words:  Key words  NiO film    perovskite    solar cell
发布日期:  2018-05-08
ZTFLH:  TM914.4+2  
基金资助: *中物院科学技术发展基金(2014A0302015)
通讯作者:  杨定明,男,1964年生,博士,教授,主要从事荧光材料方面的研究E-mail:yangdingming@swust.edu.cn   
作者简介:  王刚:男,1991年生,硕士研究生,主要从事钙钛矿太阳能电池方面的研究E-mail:1151455518@qq.com
引用本文:    
王刚,杨定明,刘江. NiO层作为空穴传输层的钙钛矿太阳能电池的制备和性能研究*[J]. 材料导报编辑部, 2017, 31(10): 6-10.
WANG Gang, YANG Dingming, LIU Jiang. Preparation and Performance of Perovskite Solar Cells with NiO Films as Hole Transporting Layers. Materials Reports, 2017, 31(10): 6-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.002  或          https://www.mater-rep.com/CN/Y2017/V31/I10/6
1 Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science,2013,342(6156):341.
2 Lin Q, Armin A, Nagiri R C R, et al. Electro-optics of perovskite solar cells[J]. Nat Photon,2015,9(2):106.
3 Miyata A, Mitioglu A,et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites[J]. Nat Phys,2015,11(7):582.
4 Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells[J]. Nat Commun,2014,5(3):3461.
5 Xing G, Mathews N, Sun S, et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science,2013,342(6156):344.
6 Ng T W, Chan C Y, Lo M F, et al. Formation chemistry of perovskites with mixed iodide/chloride content and the implications on charge transport properties[J]. J Mater Chem A,2015,3(17):9081.
7 Yu H, Liu X, Xia Y, et al. Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells[J]. J Mater Chem A,2016,4(1):321.
8 Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J Am Chem Soc,2009,131(17):6050.
9 www.nrel.gov/ncpv/images/efficiency_chart.jpg.
10 Graetzel M, Park N G. Organometal halide perovskite photovol-taics: A diamond in the rough[J]. Nano,2014,9(5):1440002.
[1] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[2] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[3] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[6] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[7] 彭林森, 李凝, 蒋武, 练彩霞. A位缺陷对LaxNiO3+δ在苯酚加氢脱氧反应中催化性能的影响[J]. 材料导报, 2024, 38(23): 23070161-5.
[8] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[9] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[10] 孙元杰, 李志刚, 王艺, 田波, 李金凤, 张楠, 赵浚峰, 张建伟, 李拓, 赵弘韬. 金属卤化物钙钛矿纳米晶体/聚合物复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23040056-10.
[11] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[12] 梁梦标, 陈婷, 秦喆, 谢志翔, 徐彦乔, 温鹏, 林坚, 郭春显. 全无机铯铅卤钙钛矿纳米晶的表面包覆策略及白光LED应用研究进展[J]. 材料导报, 2024, 38(11): 22120172-11.
[13] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[14] 王耀武, 王彬彬. 有机电子传输材料在反式钙钛矿太阳能电池中的研究现状[J]. 材料导报, 2024, 38(10): 22100210-11.
[15] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed