Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 143-148    https://doi.org/10.11896/j.issn.1005-023X.2017.01.020
  环境修复材料 |
吸附材料再生机理研究进展
刘晓咏,欧阳平
重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067
Research Progress of Regeneration Mechanisms in Adsorption Materials
LIU Xiaoyong, OUYANG Ping
Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Technology and Business University, Chongqing 400067
下载:  全 文 ( PDF ) ( 1456KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着吸附材料日趋广泛的应用,其后处理成为重要议题。再生是处理吸附材料的有效途径,具有节约资源、减少环境污染等现实意义。再生机理作为再生技术的重要内容,已得到关注。阐述了热再生、生物再生、电化学再生、微波加热再生、超临界流体再生、超声波再生、光催化再生和等离子体再生等几种再生方法机理,总结了研究人员对各再生方法机理的不同认识,指出了各再生技术的优缺点。最后,从机理角度展望了未来再生研究的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晓咏
欧阳平
关键词:  吸附材料  再生  机理    
Abstract: With the widely use of adsorption materials, the post-treatment has become an important issue. Regeneration is an effective way to treat the adsorption materials, which is resource-conserving and environment-friendly. As an important content of regeneration techniques, the regeneration mechanism has been concerned. The mechanisms of thermal regeneration, biological regene-ration, electrochemical regeneration, microwave regeneration, supercritical fluid regeneration, ultrasonic regeneration, photocatalytic regeneration and plasma regeneration are elaborated in this paper. The various understandings of regeneration mechanisms between different researchers are summarized. Meanwhile, the advantages and disadvantages of each technology are pointed out. In the end of the paper, some prospects for the future from the perspective of regeneration mechanisms are presented.
Key words:  adsorption materials    regeneration    mechanism
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TQ424  
基金资助: 中国博士后科学基金项目(2015M582524);重庆市教委科研项目(KJ1400637;KJZH14210);重庆市博士后特别资助项目(Xm2016023);重庆工商大学研究生创新型项目(yiscxx2016-060-38)
作者简介:  刘晓咏:男,1992年生,硕士研究生,从事吸附材料再生的研究 欧阳平:通讯作者,男,副研究员,研究方向为吸附材料及油料应用 E-mail:oyp9812@126.com
引用本文:    
刘晓咏, 欧阳平. 吸附材料再生机理研究进展[J]. 材料导报, 2017, 31(1): 143-148.
LIU Xiaoyong, OUYANG Ping. Research Progress of Regeneration Mechanisms in Adsorption Materials. Materials Reports, 2017, 31(1): 143-148.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.020  或          https://www.mater-rep.com/CN/Y2017/V31/I1/143
1 Liu X,Ouyang P,Chen L. Research progress of regeneration technology of adsorption material [J]. Modern Chem Ind,2015,35(1):37(in Chinese).
刘晓咏,欧阳平,陈凌.吸附材料再生技术研究进展[J]. 现代化工,2015,35(1):37.
2 Chen W,Cannon F S. Thermal reactivation of ammonia-tailored granular activated carbon exhausted with perchlorate [J]. Carbon,2005,43(13):2742.
3 Salvador F,Sanchez Jimenez C. A new methord for regeneration activated carbon by thermal desorption with liquid water under subcritical conditions [J]. Carbon,1996,34(4):511.
4 Duan X,Kannan C S,Qu W W,et al. Thermal regeneration of spent coal-based activated carbon using carbon dioxide: Process optimisa-tion,methylene blue decolorisation isotherms and kinetics[J]. Rev Progress Coloration Related Topics,2012,128(6):464.
5 Ledesma B,Román S,et al. Fundamental study on the thermal regeneration stages of exhausted activated carbons: Kinetics [J]. J Thermal Anal Calorimetry,2014,115(1):537.
6 Cazetta A L,Junior O P,Vargas A M M,et al. Thermal regeneration study of high surface area activated carbon obtained from coconut shell: Characterization and application of response surface methodo-logy [J]. J Anal Appl Pyrolysis,2013,101(5):53.
7 Bhagawan D,Poodari S,Kumar G R,et al. Reactivation and recycling of spent carbon using solvent desorption followed by thermal treatment (TR) [J]. J Mater Cycles Waste Manage,2015,17(1):185.
8 Bagreev A,Rahman H,Bandosz T J. Thermal regeneration of a spent activated carbon previously used as hydrogen sulfide adsorbent [J]. Carbon,2001,39(9):1319.
9 Narbaitz R M,Mcewen J. Electrochemical regeneration of field spent GAC from two water treatment plants [J]. Water Res,2012,15(15):4852.
10 Okwadha G D O,Li J,Ramme B,et al. Thermal removal of mercury in spent powdered activated carbon from Toxecon process [J]. J Environ Eng,2009,135(10):1032.
11 Wang J,Wei G,Chong J,et al. Experiment research on the technologies of heat treatment, recycling and regeneration of SF6 molecular sieve adsorbent[J]. J Chem Pharmaceut Res,2014,6(7):2407.
12 Cho J H,Kim Y S,Jeon S B,et al. Improvement of thermal regeneration of spent granular activated carbon using air agent: Application of sintering and deoxygenation [J]. Korean J Chem Eng,2014,31(9):1641.
13 Zhang X,Wang Z,Gu X. Simple combination of biodegradation and carbon adsorption—The mechanism of the biological activated carbon process [J]. Water Res,1991,25(2):165.
14 Aktas,zgür,een,et al. Effect of activation type on bioregeneration of various activated carbons loaded with phenol [J]. J Chem Technol Biotechnol,2006,81(7):1081.
15 Alexander S S,Larisa Y K,Konstantin G I. The BAC-process for treatment of waste water containing non-ionogenic synthetic surfactants [J]. Water Res,2001,35(13):3265.
16 Lee K M,Lim P E. Bioregeneration of powdered activatedcarbon in the treatment of alkyl-substituted phenolic compounds in simulta-neous adsorption and bioregeneration process [J]. Chemosphere,2005,58:407.
17 Wu Z,Ying A,Wang Z, et al. Study on zeolite enhanced contact-adsorption regeneration-stabilization process for nitrogen removal [J]. J Hazard Mater,2008, 156(1-3):317.
18 Gu X,Zhang L,Teng H,et al. Study on the mechanisms of bio-regeneration of saturated adsorption resin [J]. Ind Water Treat,2010,30(8):50(in Chinese).
顾锡慧,张玲,滕厚开,等.饱和吸附树脂的生物再生机理研究[J]. 工业水处理 2010,30(8):50.
19 Kaushik Nath,Mathurkumar S Bhakhar.Microbial regeneration of spent activated carbon dispersed with organic contaminants:Mechanism,efficiency,and kinetic models [J]. Environ Sci Pollut Res,2011,18(4):534.
20 Berenguer R,Marco-Lozar J P,Quijada C,et al. Electrochemical regeneration and porosity recovery of phenol-saturated granular activated carbon in an alkaline medium [J]. Carbon,2010,48(10):2734.
21 García-Otón M,Montilla F,Lillo-Ródenas M A,et al. Electrochemical regeneration of activated carbon saturated with toluene [J]. J Appl Electrochem,2005,35(3):319.
22 Berenguer R,Marco-lozar J P,Quijada C,et al. Effect of electrochemical treatments on the surface chemistry of activated carbon [J]. Carbon,2009,47(4):1018.
23 Chen R,Zheng X,Hu X. Electrochemical regeneration of active carbon fiber loaded with SCN- in diluted solutions [J]. CIESC J,2011,62(S2):102(in Chinese).
陈榕,郑翔龙,胡熙恩. 活性炭纤维吸附稀溶液中SCN-的电化学再生[J].化工学报,2011,62(S2):102.
24 Yuen F K,Hameed B H. Recent developments in the preparation and regeneration of activated carbons by microwaves [J]. Adv Colloid Interface Sci,2009,149(1-2):19.
25 Liu X,Ouyang P. Research progress on microwave radiation regene-ration of adsorbing material [J]. Appl Chem Ind,2016,45(2):328(in Chinese).
刘晓咏,欧阳平.吸附材料微波辐射再生的研究进展[J]. 应用化工,2016,45(2):328.
26 Cui C,Zheng Q,Han Y,et al. Rapid microwave-assisted regeneration of magnetic carbon nanotubes loaded with p-nitrophenol [J]. Appl Surf Sci,2015,346:99.
27 Horikoshi S,Sumi T,Serpone N. A hybrid microreactor/microwave high-pressure flow system of a novel concept design and its application to the synthesis of silver nanoparticles [J]. Chem Eng Process Process Intensification,2013,73(7):59.
28 Lv G,Wu L,Wang X,et al. Regeneration of caramel saturated activated carbon jointly by microwave and extractive method [J]. Int J Chem Reactor Eng,2012,10(1):137.
29 Chang R,Zhou Y,Lu H,et al. Desorption and recovery of ketone organic molecules on Y-zeolite adsorber under microwave irradiation [J]. Chinese J Environ Eng,2014,8(12):5399(in Chinese).
常仁芹,周瑛,卢晗锋,等.微波加热脱附回收Y分子筛吸附的酮类有机分子[J]. 环境工程学报,2014,8(12):5399.
30 Liang M T,Liang R C,Lin C H. Regeneration of cobalt-contaminated activated carbon by supercritical carbon dioxide extraction [J]. Adsorption-J Int Adsorpt Soc,2012,18(5-6):461.
31 Chung S,Pei L. Supercritical CO2 desorption of activated carbon loaded with 2,2,3,3-tetrafluoro-1-propanol in a rotating packed bed [J]. Environ Sci Technol,2008,42(6):2150.
32 Costa A E,Santana A,Quadri M B,et al. Glycerol desorption from ion exchange and adsorbent resin using supercritical fluid technology:An optimization study [J]. J Supercritical Fluids,2011,58(2):226.
33 Hoffmann M R,Hua I,Hchemer R. Application of ultrasonic irra-diation for the degradation of chemical contaminants in water [J]. Ultrasonics Sonochem,1996,3(3):S163.
34 Suslick K S,Iii M N,Didenko Y. Sonochemistry and sonoluminescence [M]. Berlin: Springer Netherlands,1999.
35 Saoudi F,Hamdaoui O. Innovative technique for 4-chlorophenol desorption from granular activated carbon by low frequency ultrasound: Influence of operational parameters [J]. Microp Mesop Mater,2011,141(1-3):69.
36 Li J,Zhang L,Yang J,et al. Ultrasonic regeneration of organically modified attapulgite clay adsorbent after adsorbing nickel(Ⅱ) ion [J]. Mater Protect,2014,47(1):55(in Chinese).
李静萍,张立威,杨佳静,等. 超声波法对吸附Ni(Ⅱ)吸附剂的再生[J]. 材料保护,2014,47(1):55.
37 Yates J T. Photochemistry on TiO2:Mechanisms behind the surface chemistry [J]. Surf Sci,2009,603(2):1605.
38 Yap P S,Lim T T. Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: Factors affecting performances and predictive model [J]. Water Res,2012,46(9):3054.
39 Ma J,Chen C,Yu F. Self-regenerative and self-enhanced smart graphene/Ag3PO4 hydrogel adsorbent under visible light [J]. New J Chem,2016,40(4):3208.
40 Chu J,Liu Y,Wang H,et al. Regeneration of acid orange 7-exhausted granular activated carbon with pulsed discharge plasma [J]. High Voltage Eng,2015,41(1):251(in Chinese).
储金宇,刘永杰,王慧娟,等. 脉冲放电等离子体再生吸附AO7饱和活性碳[J]. 高电压技术,2015,41(1):251.
41 Wang H,Guo H,Liu Y,et al. Regeneration of acid orange 7 exhausted granular activated carbon using pulsed discharge plasmas [J]. Plasma Sci Technol,2015,41(10):251.
42 Zhang Y,Sun B,Deng S,et al. Methyl orange degradation by pulsed discharge in the presence of activated carbon fibers [J]. Chem Eng J,2010,159(1-3):47.
43 Yang C,Cao D,Yu M,et al. Experiment on regeneration of activated carbon saturated with dibutyl phthalate by non-thermal plasma [J]. High Voltage Eng,2015,41(10):3505(in Chinese).
杨长河,曹定龙,俞明芬,等.吸附DBP饱和活性炭的低温等离子体再生实验[J]. 高电压技术,2015,41(10):3505.
[1] 白鹏飞, 杨聪仁, 马昆林, 丁亚蓉, 詹启贤, 孟庆胤, 陈荣健, 范佳志. 助磨剂影响矿物浮选的作用机理及研究进展[J]. 材料导报, 2025, 39(3): 24010120-7.
[2] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[3] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[7] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[8] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[9] 初红涛, 刘晓函, 赵明, 高立娣, 秦世丽, 韩爽, 王军. 铜纳米簇基荧光探针的合成及应用研究进展[J]. 材料导报, 2025, 39(2): 23110149-10.
[10] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[11] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[14] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[15] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed