Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120230-7    https://doi.org/10.11896/cldb.24120230
  无机非金属及其复合材料 |
稻壳灰粒径对碱矿渣混凝土中碱-硅酸反应的抑制机理
高鹏1,2,3, 倪庄1, 董伟1,2,3, 闻洋1,2,3, 余红发4,*
1 内蒙古科技大学土木工程学院,内蒙古 包头 014010
2 内蒙古自治区建筑结构防灾减灾工程技术研究中心,内蒙古 包头 014010
3 内蒙古自治区土木工程安全与耐久重点实验室,内蒙古 包头 014010
4 南京航空航天大学土木与机场工程系,南京 211106
Inhibition Mechanism of Rice Husk Ash Particle Size on Alkali-Silica Reaction in Alkali-Activated Slag Concrete
GAO Peng1,2,3, NI Zhuang1, DONG Wei1,2,3, WEN Yang1,2,3, YU Hongfa4
1 Department of Civil Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
2 Inner Mongolia Autonomous Region Building Structure Disaster Prevention and Mitigation Engineering Technology Research Center, Baotou 014010, Inner Mongolia, China
3 Inner Mongolia Key Laboratory of Safety and Durability for Civil Engineering, Baotou 014010, Inner Mongolia, China
4 Department of Civil and Airport Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
下载:  全 文 ( PDF ) ( 13045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决碱激发材料中使用碱激发剂所引起的耐久性问题,促进碱激发材料和农业废弃物的工业应用,以不同粒径的稻壳灰(RHA)替代矿渣制备碱激发矿渣(AAS)砂浆试样,通过MIP、XRD和SEM等分析手段研究了稻壳灰粒径变化对AAS的碱-硅酸反应(ASR)的抑制机理。结果表明:AAS的抗压强度和流动性随稻壳灰粒径减小而提升;较小粒径的稻壳灰对ASR的抑制效果更显著,在低孔隙率的作用下,试件受碱溶液侵蚀程度小,低钙硅比凝胶吸附碱金属离子有效性提高;随较大粒径RHA掺量增加ASR抑制效果降低的主要原因是其提高了整体孔隙率和有害孔占比,促使碱离子和活性骨料接触并引发高膨胀;在特定K(Na)/Si和小孔隙率作用下,ASR产物Na-shlykovite结晶可以部分转化为K-shlykovite结晶并共存,减少膨胀空间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高鹏
倪庄
董伟
闻洋
余红发
关键词:  碱-硅酸反应  碱激发矿渣  稻壳灰  抑制机理    
Abstract: In order to solve the durability problem of alkali-activated materials caused by alkali activator and promote the industrial application with agricultural wastes, rice husk ash (RHA) with different particle sizes was used instead of slag to prepare alkali-activated slag (AAS) mortar. MIP, XRD and SEM were used to analyze the effects of RHA particle size on the fluidity, mechanical properties and inhibition mechanism of alkali-silica reaction (ASR) of AAS. The results show that the compressive strength and fluidity of AAS can be improved by reducing the particle size of RHA particles. Smaller RHA particles significantly inhibit ASR, resulting in less alkali solution erosion due to lower porosity and improved adsorption of alkali metal ions by low calcium-silica ratio gel. On the contrary, larger RHA particles will increase the total porosity and harmful porosity ratio, promote the contact between alkali ions and active aggregate, and lead to higher expansion. Under specific K(Na)/Si ratios and low porosity, ASR product Na-shlykovite crystals can partially transform into K-shlykovite crystals, coexisting to reduce expansion space.
Key words:  alkali-silica reaction    alkali-activated slag    rice husk ash    inhibition mechanism
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU528  
基金资助: 国家重点基础研究发展(973计划)资助课题(2015CB655102);国家自然科学基金(52268044;51768056);内蒙古自然科学基金面上项目(2025MS05089)
通讯作者:  *余红发,博士,南京航空航天大学民航学院教授、博士研究生导师。主要从事新型无机胶凝材料和新型混凝土;土木工程材料的静动态力学行为、耐久性及其结构寿命预测方法;岛礁与机场等工程材料与结构耐久性设计及混凝土细观力学方法在土木工程中的应用工作。yuhongfa@nuaa.edu.cn   
作者简介:  高鹏,博士,内蒙古科技大学土木工程学院副教授、硕士研究生导师。目前主要从事混凝土结构耐久性等方面的研究。
引用本文:    
高鹏, 倪庄, 董伟, 闻洋, 余红发. 稻壳灰粒径对碱矿渣混凝土中碱-硅酸反应的抑制机理[J]. 材料导报, 2025, 39(24): 24120230-7.
GAO Peng, NI Zhuang, DONG Wei, WEN Yang, YU Hongfa. Inhibition Mechanism of Rice Husk Ash Particle Size on Alkali-Silica Reaction in Alkali-Activated Slag Concrete. Materials Reports, 2025, 39(24): 24120230-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120230  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120230
1 Wei W, Takafumi N, Ippei M. Cement and Concrete Research, 2022, 156, 106768.
2 Sarah F, Chamila G, Law W D, et al. Journal of Environmental Management, 2021, 295, 113140.
3 Ding Y, Dai J, Shi C. Construction and Building Materials, 2016, 127, 68.
4 Mariam A, Jouni H, Jutta J N, et al. Journal of Cleaner Production, 2020, 280 (P1), 124651.
5 Shashwati P S, Umesh M, Sushant B K, et al. Construction and Building Materials, 2023, 400, 132685.
6 Huo Y L, Huang J G, Lu D, et al. Journal of Building Engineering, 2023, 78, 107637.
7 Kumar S D, Jyotirmoy M, Mohammed S M, et al. Journal of Sustainable Cement-Based Materials, 2022, 11(2), 142.
8 Wang Z W, Li B X, Alselwi O, et al. Journal of Building Engineering, 2023, 75, 106970.
9 Le T H, Ludwig H. Construction and Building Materials, 2020, 243, 118145.
10 Ma Z Y, Huang H R, Hu X Y, et al. Case Studies in Construction Materials, 2023, 18, e02028.
11 Tian B, Li X, Lv Y, et al. Materials, 2023, 16(8), 3148.
12 He Z, Li L, Du S. Cement and Concrete Composites, 2017, 80, 190.
13 Alomayri T, Adesina A, Das S. Case Studies in Construction Materials, 2021, 15, e00777.
14 Ministry of Water Resources of the People’s Republic of China. Test code for hydraulic concrete, China Water & Power Press, China, 2006, pp. 46(in Chinese).
中华人民共和国水利部. 水工混凝土试验规程, 中国水利水电出版社, 2020, pp. 46.
15 Wang S. Construction and Building Materials, 2015, 82, 123.
16 Liu S, Zhang T, Guo Y, et al. Powder Technology, 2018, 330, 1.
17 Thomas M. Cement and Concrete Research, 2010, 41 (3), 209.
18 Lawrence P, Cyr M, Ringot E. Cement and Concrete Research, 2004, 35 (6), 1092.
19 Wang W, Noguchi T, Tomoyose A, et al. Cement and Concrete Compo-sites, 2024, 152, 105665.
20 Shi Z, Shi C, Zhao R, et al. Materials and Structures, 2015, 48, 743.
21 Fernández-Jiménez A, Puertas F. Cement and Concrete Research, 2002, 32 (7), 1019.
22 Gong N Q, Wang D H. Materials Reports, 2024, 38 (2), 89 (in Chinese).
龚青南, 王德辉. 材料导报, 2024, 38 (2), 89.
23 Fu Q, Bu M, Zhang Z, et al. Engineering, 2023, 20, 162.
24 Gao P, Wang Y B, Xue G, et al. Journal of Building Materials, 2023, 26(4), 429(in Chinese).
高鹏, 王永博, 薛刚, 等. 建筑材料学报, 2023, 26 (4), 429.
25 Wenda W, Tao W, Qingnan G, et al. Construction and Building Materials, 2023, 400, 132822.
26 Xiong G, Cundy A, Guo X. Journal of Cleaner Production, 2024, 476, 143741.
[1] 王远达, 张鸿儒, 李从正, 樊静宜, 林旭健. 水流作用下碱激发矿渣砂浆的氯离子传输规律[J]. 材料导报, 2025, 39(21): 24100161-7.
[2] 李静, 张灵, 王昊, 陈犇, 陈东彬, 黄莹, 陈正. 碱激发矿渣混凝土密实性超声无损检测法及其影响因素[J]. 材料导报, 2024, 38(11): 22090243-7.
[3] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[4] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[5] 陈潇, 卢亚磊, 王稷良, 杜新宇. 基于风积沙特性的固化剂组成设计及其固化机理研究[J]. 材料导报, 2022, 36(16): 21110087-8.
[6] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[7] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[8] 马晓宇, 梁雨, 崔素萍, 王志宏, 王亚丽. 稻壳灰制备TiO2-SiO2复合载体脱硝催化材料[J]. 材料导报, 2018, 32(22): 3984-3988.
[9] 王亚丽, 陈美娜, 崔素萍, 马晓宇. 稻壳灰-电石渣复合吸收剂的脱硫脱硝性能[J]. 材料导报, 2018, 32(22): 3995-3999.
[10] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[11] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[12] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed