Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24060110-19    https://doi.org/10.11896/cldb.24060110
  无机非金属及其复合材料 |
锂电池热失控安全防护研究进展
陆豪宇1,2, 沈文锋2,3,4,*, 吕大伍2,3, 赵俊华5, 宋伟杰2,3, 谭瑞琴1,*
1 宁波大学信息科学与工程学院,浙江 宁波 315211
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
3 中国科学院大学材料科学与光电子工程中心,北京 100049
4 中科微感(宁波)科技有限公司,浙江 宁波 315201
5 衢州学院化学与材料工程学院,浙江 衢州 324000
Research Progress on Safety Strategies for Thermal Runaway in Lithium-ion Batteries
LU Haoyu1,2, SHEN Wenfeng2,3,4,*, LYU Dawu2,3, ZHAO Junhua5, SONG Weijie2,3, TAN Ruiqin1,*
1 School of Information Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
2 Ningbo Institute of Material Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
3 Center for Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 CS-Microsensor (Ningbo) Technology Co., Ltd., Ningbo 315201, Zhejiang, China
5 College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, Zhejiang, China
下载:  全 文 ( PDF ) ( 40457KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池(简称锂电池)以其高能量密度、长循环寿命等优点在储能领域得到了广泛应用。然而,由于机械滥用、电滥用和热滥用导致的热失控事故严重制约了锂电池的大规模应用。如何提高锂电池的安全性已成为学者们日益关注的研究热点。因此,本文从多个方面对如何提高锂电池安全性能的相关研究进展进行综合性的评述与分析。首先介绍了锂电池的结构、工作原理及热失控失效机制,然后全面分析了目前更安全的锂电池材料设计研究和锂电池热失控安全监测、早期预警技术,最后针对进一步提高电池系统安全性和稳定性的潜在研究进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陆豪宇
沈文锋
吕大伍
赵俊华
宋伟杰
谭瑞琴
关键词:  锂电池  热失控  电池安全  早期预警    
Abstract: Lithium-ion batteries have gained widespread application in energy storage due to their high energy density and prolonged cycle life. However, the large-scale deployment of lithium batteries is severely impeded by thermal runaway incidents caused by mechanical, electrical, and thermal abuse. Enhancing the safety of lithium batteries has emerged as a focal point of increasing scholarly interest. This paper presents a comprehensive review and analysis of the research progress aimed at improving the safety performance of lithium batteries. It begins by elucidating the structure, working principle, and thermal runaway failure mechanism of lithium batteries. Subsequently, a thorough analysis is conducted on current research pertaining to the design of safer lithium-ion battery materials and the development of thermal runaway safety monitoring and early warning technologies. Finally, the paper provides a prospective outlook on potential research avenues to enhance the safety and stability of battery systems.
Key words:  lithium-ion battery    thermal runaway    battery safety    early warning
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TP212  
基金资助: 浙江省自然科学基金(LGF22F010008); 宁波市重点研发计划(2023Z021)
通讯作者:  * 沈文锋,博士,中国科学院宁波材料技术与工程研究所副研究员,中科微感(宁波)科技有限公司首席科学家。从事智能柔性传感材料与器件方面的研究。wfshen@nimte.ac.cn
谭瑞琴,宁波大学信息科学与工程学院研究员、博士研究生导师。目前主要从事半导体型光电功能纳米材料及相关器件、光电功能薄膜和柔性电子器件的制备及集成等相关方面的研究。tanruiqin@nbu.edu.cn   
作者简介:  陆豪宇,宁波大学与中国科学院宁波材料技术与工程研究所联合培养硕士研究生,在沈文锋副研究员的指导下进行研究。目前主要研究领域为用于锂电池热失控预警的传感器。
引用本文:    
陆豪宇, 沈文锋, 吕大伍, 赵俊华, 宋伟杰, 谭瑞琴. 锂电池热失控安全防护研究进展[J]. 材料导报, 2025, 39(14): 24060110-19.
LU Haoyu, SHEN Wenfeng, LYU Dawu, ZHAO Junhua, SONG Weijie, TAN Ruiqin. Research Progress on Safety Strategies for Thermal Runaway in Lithium-ion Batteries. Materials Reports, 2025, 39(14): 24060110-19.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060110  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24060110
1 Alliance C E S. 2023 China new energy storage industry white paper, Beijing, China, 2023.
2 Wang Q, Mao B, Stoliarov S I, et al. Progress in Energy and Combustion Science, 2019, 73, 95.
3 Zhang H, Shen B, Hu W, et al. Sensors, DOI:10. 3390/s18072191.
4 Liao Z, Zhang S, Li K, et al. Journal of Power Sources, 2019, 436, 226879.
5 Adenusi H, Chass G A, Passerini S, et al. Advanced Energy Materials, 2023, 13(10), 2300258.
6 Manthiram A. ACS Central Science, 2017, 3(10), 1063.
7 Julien C M, Banov B, Momchilov A, et al. Journal of Power Sources, 2006, 159(2), 1365.
8 Tong W, Xu J. ECS Meeting Abstracts, 2016, MA2016-02(3), 291.
9 Fu P, Zhao Y, Dong Y, et al. Journal of Power Sources, 2006, 162(1), 651.
10 Mangold K M. Journal of Power Sources, 2011, 196(10), 4871.
11 Choi J U, Voronina N, Sun Y K, et al. Advanced Energy Materials, 2020, 10(42), 2002027.
12 Nitta N, Wu F, Lee J T, et al. Materials Today, 2015, 18(5), 252.
13 Buiel E, Dahn J R. Electrochimica Acta, 1999, 45(1), 121.
14 Fong R A, Von Sacken U, Dahn J R. Journal of the Electrochemical Society, 1990, 137(7), 2009.
15 Kalhoff J, Eshetu G G, Bresser D, et al. ChemSusChem, 2015, 8(13), 2154.
16 Nzereogu P U, Omah A D, Ezema F I, et al. Applied Surface Science Advances, 2022, 9, 100233.
17 Zhao Q, Stalin S, Archer L A. Joule, 2021, 5(5), 1119.
18 Wu S Y, Wang Y Q, Xiao R J, et al. Acta Physica Sinica, 2020, 69(22), 226104-1.
19 Moon J, Kim D O, Bekaert L, et al. Nature Communications, 2022, 13(1), 4538.
20 Qin N, Jin L, Lu Y, et al. Advanced Energy Materials, 2022, 12(15), 2103887.
21 Stetson C, Schnabel M, Li Z, et al. ACS Energy Letters, 2020, 5(12), 3657.
22 Marcinek M, Syzdek J, Marczewski M, et al. Solid State Ionics, 2015, 276, 107.
23 Lin Y, Li X, Chen X, et al. Polymer, 2019, 184, 121930.
24 Wang C C, Lin Y C, Chiu K F, et al. ChemistrySelect, 2017, 2(16), 4419.
25 Roy P, Srivastava S K. Journal of Materials Chemistry A, 2015, 3(6), 2454.
26 Wang Q, Ping P, Zhao X, et al. Journal of Power Sources, 2012, 208, 210.
27 Zhao L, Watanabe I, Doi T, et al. Journal of Power Sources, 2006, 161(2), 1275.
28 Gachot G G, Grugeon S, Eshetu G G, et al. Electrochimica Acta, 2012, 83, 402.
29 Mao B, Chen H, Cui Z, et al. International Journal of Heat and Mass Transfer, 2018, 122, 1103.
30 Jiang J, Dahn J R. Electrochemistry Communications, 2004, 6(1), 39.
31 Markevich E, Salitra G, Aurbach D. Electrochemistry Communications, 2005, 7(12), 1298.
32 Jiang M, Danilov D L, Eichel R A, et al. Advanced Energy Materials, 2021, 11(48), 2103005.
33 He W, Guo W, Wu H, et al. Advanced Materials, 2021, 33(50), 2005937.
34 Huang C, Wang Z, Wang H, et al. Materials Today Energy, 2022, 29, 101116.
35 Clément R J, Lun Z, Ceder G. Energy & Environmental Science, 2020, 13(2), 345.
36 Radin M D, Hy S, Sina M, et al. Advanced Energy Materials, 2017, 7(20), 1602888.
37 Nohma T, Kurokawa H, Uehara M, et al. Journal of Power Sources, 1995, 54(2), 522.
38 Eilers-Rethwisch M, Hildebrand S, Evertz M, et al. Journal of Power Sources, 2018, 397, 68.
39 Gao A, Sun Y, Zhang Q, et al. Journal of Materials Chemistry A, 2020, 8(13), 6337.
40 Wu T, Liu X, Zhang X, et al. Advanced Materials, 2021, 33(2), 2001358.
41 Arai H, Okada S, Ohtsuka H, et al. Solid State Ionics, 1995, 80(3), 261.
42 Aurbach D, Srur-Lavi O, Ghanty C, et al. Journal of the Electrochemical Society, 2015, 162(6), A1014.
43 Nisar U, Muralidharan N, Essehli R, et al. Energy Storage Materials, 2021, 38, 309.
44 Han Y, Lei Y, Ni J, et al. Small, 2022, 18(43), 2200710.
45 Wang S, Yang J, Wu X, et al. Journal of Power Sources, 2014, 245, 570.
46 Breuer O, Chakraborty A, Liu J, et al. ACS Applied Materials & Interfaces, 2018, 10(35), 29608.
47 House R A, Marie J J, Park J, et al. Nature Communications, 2021, 12(1), 2975.
48 Schipper F, Bouzaglo H, Dixit M, et al. Advanced Energy Materials, 2018, 8(4), 1701682.
49 Shen Y, Yao X, Zhang J, et al. Nano Energy, 2022, 94, 106900.
50 Zheng Z, Guo X D, Zhong Y J, et al. Electrochimica Acta, 2016, 188, 336.
51 Li H, Zhou P, Liu F, et al. Chemical Science, 2019, 10(5), 1374.
52 Majumder S B, Nieto S, Katiyar R S. Journal of Power Sources, 2006, 154(1), 262.
53 Li W, Liu X, Celio H, et al. Advanced Energy Materials, 2018, 8(15), 1703154.
54 Chen G, An J, Meng Y, et al. Nano Energy, 2019, 57, 157.
55 Zhou K, Zheng S, Ren F, et al. Energy Storage Materials, 2020, 32, 234.
56 Wang T, Zhang C, Li S, et al. ACS Applied Materials & Interfaces, 2021, 13(10), 12159.
57 Li C, Kan W H, Xie H, et al. Advanced Science, 2019, 6(4), 1801407.
58 Guo B, Zhao J, Fan X, et al. Electrochimica Acta, 2017, 236, 171.
59 Levartovsky Y, Chakraborty A, Kunnikuruvan S, et al. ACS Applied Materials & Interfaces, 2021, 13(29), 34145.
60 Zheng J, Liu T, Hu Z, et al. Journal of the American Chemical Society, 2016, 138(40), 13326.
61 Xiao B, Sun X. Advanced Energy Materials, 2018, 8(29), 1802057.
62 Lei Y, Ni J, Hu Z, et al. Advanced Energy Materials, 2020, 10(41), 2002506.
63 Xin F, Zhou H, Zong Y, et al. ACS Energy Letters, 2021, 6(4), 1377.
64 Li Z, Cao S, Wu C, et al. Journal of Power Sources, 2022, 536, 231456.
65 Du K, Xie H, Hu G, et al. ACS Applied Materials & Interfaces, 2016, 8(27), 17713.
66 Lee Y, Lee J, Lee K Y, et al. Journal of Power Sources, 2016, 315, 284.
67 Liu S, Liu Z, Shen X, et al. Advanced Energy Materials, 2018, 8(31), 1802105.
68 Wang Y, Xiao X, Li Q, et al. Small, 2018, 14(41), 1802193.
69 Luo K, Roberts M R, Hao R, et al. Nature Chemistry, 2016, 8(7), 684.
70 Lee K T, Cho J. Nano Today, 2011, 6(1), 28.
71 Hou P, Zhang H, Zi Z, et al. Journal of Materials Chemistry A, 2017, 5(9), 4254.
72 Zhu L, Fu L, Zhou K, et al. Chemical Record, 2022, 22(10), e202200097.
73 Oh P, Myeong S, Cho W, et al. Nano Letters, 2014, 14(10), 5965.
74 Sun Y K, Myung S T, Kim M H, et al. Journal of the American Chemical Society, 2005, 127(38), 13411.
75 Sun Y K, Chen Z, Noh H J, et al. Nature Materials, 2012, 11(11), 942.
76 Zhao P, Sedlacik M, Saha P, et al. ACS Sustainable Chemistry & Engineering, 2024, 12(12), 4993.
77 Zhang C, Li T, Xue B, et al. Chemical Engineering Journal, 2023, 8(4), 356.
78 Fan X, Hu G, Zhang B, et al. Nano Energy, 2020, 70, 104450.
79 Pang P, Tan X, Wang Z, et al. Electrochimica Acta, 2021, 365, 137380.
80 Yoon M, Dong Y, Huang Y, et al. Nature Energy, 2023, 8(5), 482.
81 Zhou S, Mei T, Liu J, et al. ACS Applied Materials & Interfaces, 2020, 12(15), 17376.
82 Yu Q, Liu J, Liang Y, et al. Electrochimica Acta, 2022, 422, 140515.
83 Su A, Li J, Dong J, et al. Small, 2020, 16(24), 2001195.
84 Cong R, Jo M, Martino A, et al. Scientific Reports, 2022, 12(1), 16002.
85 Wang J H, Chung C H, Chi P W, et al. ACS Applied Nano Materials, 2023, 6(13), 12578.
86 Wang H, Wang C, Tang Y. EcoMat, 2021, 3(6), e12131.
87 Li C, Bai H, Shi G. Chemical Society Reviews, 2009, 38(8), 2397.
88 Zeng Z, Jiang X, Li R, et al. Advanced Science, 2016, 3(9), 1600066.
89 Kang Y, Duan B, Zhou Z, et al. Journal of Power Sources, 2019, 417, 132.
90 Kang Y, Duan B, Zhou Z, et al. Applied Energy, 2020, 259, 114170.
91 Mukhopadhyay A, Tokranov A, Xiao X, et al. Electrochimica Acta, 2012, 66, 28.
92 Sethuraman V A, Chon M J, Shimshak M, et al. Journal of Power Sources, 2010, 195(15), 5062.
93 Yang H, Guo C, Naveed A, et al. Energy Storage Materials, 2018, 14, 199.
94 Kim C K, Kim K, Shin K, et al. ACS Applied Materials & Interfaces, 2017, 9(50), 44161.
95 Young B T, Heskett D R, Nguyen C C, et al. ACS Applied Materials & Interfaces, 2015, 7(36), 20004.
96 Von Aspern N, Röschenthaler G V, Winter M, et al. Angewandte Chemie International Edition, 2019, 58(45), 15978.
97 Tong B, Huang J, Zhou Z, et al. Advanced Materials, 2018, 30(1), 1704841.
98 Amereller M, Schedlbauer T, Moosbauer D, et al. Progress in Solid State Chemistry, 2014, 42(4), 39.
99 Krause L J, Lamanna W, Summerfield J, et al. Journal of Power Sources, 1997, 68(2), 320.
100 Miao R, Yang J, Feng X, et al. Journal of Power Sources, 2014, 271, 291.
101 Amine R, Liu J, Acznik I, et al. Advanced Energy Materials, 2020, 10(25), 2000901.
102 Chen S, Lan R, Humphreys J, et al. Energy Storage Materials, 2020, 28, 205.
103 Wang W, Zhang J, Yang Q, et al. ACS Applied Materials & Interfaces, 2020, 12(20), 22901.
104 Zheng Y, Soto F A, Ponce V, et al. Journal of Materials Chemistry A, 2019, 7(43), 25047.
105 Zhai P, Wang T, Yang W, et al. Advanced Energy Materials, 2019, 9(18), 1804019.
106 Yu Z, Zhang J, Liu T, et al. Acta Chimica Sinica, 2020, 78(2), 117.
107 Qian J, Henderson W A, Xu W, et al. Nature Communications, 2015, 6(1), 6362.
108 Chen X, Hou T Z, Li B, et al. Energy Storage Materials, 2017, 8, 194.
109 Zhang X Q, Cheng X B, Chen X, et al. Advanced Functional Materials, 2017, 27(10), 1605989.
110 Kuwata H, Sonoki H, Matsui M, et al. Electrochemistry, 2016, 84(11), 854.
111 Cheng X B, Yan C, Chen X, et al. Chem, 2017, 2(2), 258.
112 Cheng X B, Yan C, Peng H J, et al. Energy Storage Materials, 2018, 10, 199.
113 Ye H, Yin Y X, Zhang S F, et al. Nano Energy, 2017, 36, 411.
114 Huang Z, Ren J, Zhang W, et al. Advanced Materials, 2018, 30(39), 1803270.
115 Chu F, Hu J, Wu C, et al. ACS Applied Materials & Interfaces, 2019, 11(4), 3869.
116 Jiang Z, Zeng Z, Yang C, et al. Nano Letters, 2019, 19(12), 8780.
117 Ding F, Xu W, Graff G L, et al. Journal of the American Chemical Society, 2013, 135(11), 4450.
118 Ma Y, Zhou Z, Li C, et al. Energy Storage Materials, 2018, 11, 197.
119 Zheng Y, Fang W, Zheng H, et al. Journal of the Electrochemical So-ciety, 2019, 166(14), A3222.
120 Nagasubramanian G, Fenton K. Electrochimica Acta, 2013, 101, 3.
121 Zeng Z, Murugesan V, Han K S, et al. Nature Energy, 2018, 3(8), 674.
122 Fan X, Chen L, Borodin O, et al. Nature Nanotechnology, 2018, 13(8), 715.
123 Liu J, Bao Z, Cui Y, et al. Nature Energy, 2019, 4(3), 180.
124 Seki S, Serizawa N, Takei K, et al. RSC Advances, 2016, 6(39), 33043.
125 Yu G, Zhou F, Liu W, et al. Wear, 2006, 260(9), 1076.
126 Sun H, Zhu G, Zhu Y, et al. Advanced Materials, 2020, 32(26), 2001741.
127 Girard G M A, Wang X, Yunis R, et al. Batteries & Supercaps, 2019, 2(3), 229.
128 Liu L, Sun C. ChemElectroChem, 2020, 7(3), 707.
129 Periyapperuma K, Arca E, Harvey S, et al. Journal of Materials Che-mistry A, 2020, 8(7), 3574.
130 Li L, Wang M, Wang J, et al. Journal of Materials Chemistry A, 2020, 8(16), 8033.
131 Shi J, Xiong H, Yang Y, et al. Solid State Ionics, 2018, 326, 136.
132 Kataria S, Verma Y L, Gupta H, et al. Polymer-Plastics Technology and Materials, 2020, 59(9), 952.
133 Hu J, He P, Zhang B, et al. Energy Storage Materials, 2020, 26, 283.
134 Li G, Guan X, Wang A, et al. Energy Storage Materials, 2020, 24, 574.
135 Zhu M, Wu J, Liu B, et al. Journal of Membrane Science, 2019, 588, 117194.
136 Chen R, Qu W, Guo X, et al. Materials Horizons, 2016, 3(6), 487.
137 Malik M S, Aslam S, Aslam S. International Journal of Business Performance Management, 2018, 19(3), 371.
138 Fan L, Wei S, Li S, et al. Advanced Energy Materials, 2018, 8(11), 1702657.
139 Ma X, Xu Y, Zhang B, et al. Journal of Power Sources, 2020, 453, 227881.
140 Niu C, Liu J, Chen G, et al. Journal of Power Sources, 2019, 417, 70.
141 Wan Z, Lei D, Yang W, et al. Advanced Functional Materials, 2019, 29(1), 1805301.
142 Sun C, Liu J, Gong Y, et al. Nano Energy, 2017, 33, 363.
143 Chen Y, Liu Z, Lin M, et al. Science China Chemistry, 2019, 62(4), 479.
144 Lei Q K, Zhang Q, Wu X Y, et al. Chemical Engineering Journal, 2020, 395, 125187.
145 Zhang K, Xiao W, Li X, et al. Journal of Power Sources, 2020, 468, 228403.
146 Zhao C Z, Chen P Y, Zhang R, et al. Science Advances, 4(11), eaat3446.
147 Lee Y, Lee H, Lee T, et al. Journal of Power Sources, 2015, 294, 537.
148 Shi C, Dai J, Shen X, et al. Journal of Membrane Science, 2016, 517, 91.
149 Pan R, Sun R, Wang Z, et al. Nano Energy, 2019, 55, 316.
150 Moon J, Jeong J Y, Kim J I, et al. Journal of Power Sources, 2019, 416, 89.
151 Pan R, Xu X, Sun R, et al. Small, 2018, 14(21), 1704371.
152 Chi M, Shi L, Wang Z, et al. Nano Energy, 2016, 28, 1.
153 Zhao H, Deng N, Wang G, et al. Chemical Engineering Journal, 2021, 404, 126542.
154 Li Y, Li Q, Tan Z. Journal of Power Sources, 2019, 443, 227262.
155 Sun G, Kong L, Liu B, et al. Journal of Membrane Science, 2019, 582, 132.
156 Wang L, Deng N, Ju J, et al. Electrochimica Acta, 2019, 300, 263.
157 Lu W, Yuan Z, Zhao Y, et al. Chemical Society Reviews, 2017, 46(8), 2199.
158 Du Q C, Yang M T, Yang J K, et al. ACS Applied Materials & Interfaces, 2019, 11(38), 34895.
159 Luiso S, Henry J J, Pourdeyhimi B, et al. ACS Applied Polymer Materials, 2021, 3(6), 3038.
160 Cao L, An P, Xu Z, et al. Journal of Electroanalytical Chemistry, 2016, 767, 34.
161 Cho S J, Choi H, Youk J H. Fibers and Polymers, 2020, 21(5), 993.
162 Ma X, Kolla P, Yang R, et al. Electrochimica Acta, 2017, 236, 417.
163 Zhang X, Li N, Hu Z, et al. Journal of Membrane Science, 2019, 581, 355.
164 Liu X, Song K, Lu C, et al. Journal of Membrane Science, 2018, 555, 1.
165 Kong L, Yan Y, Qiu Z, et al. Journal of Membrane Science, 2018, 549, 321.
166 Sun G, Dong G, Kong L, et al. Nanoscale, 2018, 10(47), 22439.
167 Patel A, Wilcox K, Li Z, et al. ACS Applied Materials & Interfaces, 2020, 12(23), 25756.
168 Zhang T W, Chen J L, Tian T, et al. Advanced Functional Materials, 2019, 29(28), 1902221.
169 Zhao J, Chen D, Boateng B, et al. Journal of Power Sources, 2020, 451, 227773.
170 Wang Y, Shi L, Zhou H, et al. Electrochimica Acta, 2018, 259, 386.
171 Huo H, Li X, Chen Y, et al. Energy Storage Materials, 2020, 29, 361.
172 Luo W, Zhou L, Fu K, et al. Nano Letters, 2015, 15(9), 6149.
173 Boateng B, Han Y, Zhen C, et al. Nano Letters, 2020, 20(4), 2594.
174 Hu Z, Liu F, Gao J, et al. Advanced Functional Materials, 2019, 30(5), 1906545.
175 Yan J, Liu F, Hu Z, et al. Nano Letters, 2020, 20(5), 3798.
176 Li X, Liu Y, Pan Y, et al. Journal of Materials Chemistry A, 2019, 7(37), 21349.
177 Fu S, Wang L, Zhao T, et al. ChemElectroChem, 2020, 7(9), 2159.
178 Chao C H, Hsieh C T, Ke W J, et al. Journal of Power Sources, 2021, 482, 228896.
179 Ye M, Xiao Y, Cheng Z, et al. Nano Energy, 2018, 49, 403.
180 Liu K, Zhuo D, Lee H W, et al. Advanced Materials, 2016, 29(4), 1603987.
181 Chen X, Zhang R, Zhao R, et al. Energy Storage Materials, 2020, 31, 181.
182 Zhang S S, Fan X, Wang C. Journal of Materials Chemistry A, 2018, 6(23), 10755.
183 Su T, Lyu N, Zhao Z, et al. Journal of Energy Storage, 2021, 38, 102498.
184 Gachot G G, RibièRe P, Mathiron D, et al. Analytical Chemistry, 2011, 83(2), 478.
185 Lammer M, Königseder A, Hacker V. RSC Advances, 2017, 7(39), 24425.
186 Mutyala M S K, Zhao J, Li J, et al. Journal of Power Sources, 2014, 260, 43.
187 Kamat R K, Naik G M. Sensor Review, 2002, 22(4), 334.
188 Chalise D, Shah K, Halama T, et al. International Journal of Heat and Mass Transfer, 2017, 112, 89.
189 Duff M, Towey J. Analog Dialogue, 2010, 44(10), 1.
190 Cao J, Emadi A. IEEE Industrial Electronics Magazine, 2011, 5(1), 27.
191 Schuster E, Ziebert C, Melcher A, et al. Journal of Power Sources, 2015, 286, 580.
192 Kong D, Wang G, Ping P, et al. Applied Thermal Engineering, 2021, 189, 116661.
193 Nascimento M, Ferreira M S, Pinto J O L. Measurement, 2017, 111, 260.
194 Vertiz G, Oyarbide M, Macicior H, et al. Journal of Power Sources, 2014, 272, 476.
195 Christensen J, Cook D, Albertus P. Journal of the Electrochemical Society, 2013, 160(11), A2258.
196 Wang Y, Gu Z, Wang S, et al. In:Proceedings of the IEEE 13th International Conference on Electronic Measurement and Instruments (ICEMI). 2017, pp. 401.
197 Robinson J B, Shearing P R, Brett D J. Journal of Imaging, 2016, 2(1), 2.
198 Chikh-Bled H, Chah K, González-Vila A, et al. Optics Letters, 2016, 41(17), 4048.
199 Yang G, LeitÃfO C, Li Y, et al. Measurement, 2013, 46(9), 3166.
200 Zhang G, Cao L, Ge S, et al. Journal of the Electrochemical Society, 2014, 161(10), A1499.
201 Anthony D, Wong D, Wetz D, et al. International Journal of Heat and Mass Transfer, 2017, 111, 223.
202 Grandjean T, Barai A, Hosseinzadeh E, et al. Journal of Power Sources, 2017, 359, 215.
203 Dey S, Biron Z A, Tatipamula S, et al. Control Engineering Practice, 2016, 56, 37.
204 Drake S J, Martin M, Wetz D A, et al. Journal of Power Sources, 2015, 285, 266.
205 Li X, He F, Ma L. Journal of Power Sources, 2013, 238, 395.
206 Parhizi M, Ahmed M B, Jain A. Journal of Power Sources, 2017, 370, 27.
207 Zhu S, Han J, An H Y, et al. Journal of Power Sources, 2020, 456, 227981.
208 Zhang D, Dey S, Tang S X, et al. Automatica, 2021, 133, 109849.
209 Xie Y, Li W, Hu X, et al. IEEE Transactions on Transportation Electrification, 2020, 6(2), 375.
210 Fleckenstein M, Fischer S, Bohlen O, et al. Journal of Power Sources, 2013, 223, 259.
211 Feng X, Fang M, He X, et al. Journal of Power Sources, 2014, 255, 294.
212 Xia B, Shang Y, Nguyen T, et al. Journal of Power Sources, 2017, 337, 1.
213 Lamb J, Orendorff C J, Steele L A M, et al. Journal of Power Sources, 2015, 283, 517.
214 Xia B, Mi C. Journal of Power Sources, 2016, 308, 83.
215 Zhang M, Ouyang M, Lu L, et al. ECS Transactions, 2017, 77(11), 217.
216 Pan Y, Feng X, Zhang M, et al. Journal of Cleaner Production, 2020, 255, 120277.
217 Fei L, Geng C, Jie H, et al. Energy Storage Science and Technology, 2014, 3(2), 146.
218 Srinivasan R, Demirev P A, Carkhuff B G. Journal of Power Sources, 2018, 405, 30.
219 Dong P, Liu Z, Wu P, et al. Journal of the Electrochemical Society, 2021, 168(9), 090529.
220 Li B, Zou Z, Meng F, et al. Molecular Immunology, 2019, 109, 1.
221 Kwak E, Son D S, Jeong S, et al. Journal of Energy Storage, 2020, 28, 101269.
222 Cai T, Stefanopoulou A G, Siegel J B. Journal of the Electrochemical Society, 2019, 166(12), A2431.
223 Zheng Y, Qian K, Luo D, et al. RSC Advances, 2016, 6(36), 30474.
224 Fernandes Y, Bry A, De Persis S. Journal of Power Sources, 2018, 389, 106.
225 Koch S, Fill A, Birke K P. Journal of Power Sources, 2018, 398, 106.
226 Wang S, Wang Q, Xu L, et al. Journal of Energy Storage, 2024, 84, 110892.
227 Chen S, Wang Z, Wang J, et al. Journal of Loss Prevention in the Process Industries, 2020, 63, 103992.
228 Kennedy R W, Marr K C, Ezekoye O A. Journal of Power Sources, 2021, 487, 229388.
229 Yang Y, Wang Z, Guo P, et al. Journal of Energy Storage, 2021, 33, 101863.
230 Yuan L, Dubaniewicz T, Zlochower I, et al. Process Safety and Environmental Protection, 2020, 144, 186.
231 Zou K, Lu S, Chen X, et al. Journal of Energy Storage, 2021, 39, 102609.
232 Larsson F, Bertilsson S, Furlani M, et al. Journal of Power Sources, 2018, 373, 220.
233 Said A O, Lee C, Stoliarov S I. Journal of Power Sources, 2020, 446, 227347.
234 Mao B, Chen H, Jiang L, et al. Process Safety and Environmental Protection, 2020, 139, 133.
235 Wang S, Wang Q, Xu L, et al. Fire Technology, 2024, 84, 111234.
236 Golubkov A W, Fuchs D, Wagner J, et al. RSC Advances, 2014, 4(7), 3633.
237 Zhang J, Guo Q, Liu S, et al. Journal of Energy Storage, 2024, 80, 110201.
238 Zhang C, Wang S, Liu Z, et al. Journal of Energy Storage, 2024, 88, 111533.
239 Cai T, Valecha P, Tran V, et al. eTransportation, 2021, 7, 100100.
240 Lyu N, Shi S, Lu H, et al. Process Safety and Environmental Protection, 2023, 175, 565.
241 Huang W, Feng X, Pan Y, et al. Journal of Energy Storage, 2023, 59, 106502.
242 Mateev V, Marinova I, Kartunov Z. Sensors, 2019, 19(15), 3315.
243 Cai T, Tran V, Stefanopoulou A G, et al. IFAC-PapersOnLine, 2021, 54(20), 528.
244 Cummings S R, Swartz S L, Frank N B, et al. U. S. patent, US20200123456, 2020.
245 Swartz S L, Cummings S R, Frank N B, et al. NEXCERIS:lewis center, OH, USA, 2017.
246 Jin Y, Zheng Z, Wei D, et al. Joule, 2020, 4(8), 1714.
247 Del Orbe Henriquez D, Cho I, Yang H, et al. ACS Applied Nano Materials, 2021, 4(1), 7.
248 Kim E B, Seo H K. Materials, 2019, 12(2), 135.
249 PéRez R O L, Ayala C E, Park J Y, et al. Chemosensors, 2021. 9(7), 37.
250 Chang Y, Hasan D, Dong B, et al. ACS Applied Materials & Interfaces, 2018, 10(44), 38272.
251 Jian Y, Hu W, Zhao Z, et al. Nano-Micro Letters, 2020, 12(1), 71.
252 Dey A. Materials Science and Engineering, B, 2018, 229, 206.
253 Katoch A, Abideen Z U, Kim J H, et al. Sensors and Actuators B:Chemical, 2016, 232, 698.
254 Park J Y, Asokan K, Choi S W, et al. Sensors and Actuators B:Chemical, 2011, 152(2), 254.
255 Zhang D, Wang D, Pan W, et al. Sensors and Actuators B:Chemical, 2022, 360, 131634.
256 Wang Y, Meng X N, Cao J L. Journal of Hazardous Materials, 2020, 381, 120944.
257 Chinh N D, Hung N M, Majumder S, et al. Sensors and Actuators B:Chemical, 2021, 326, 128956.
258 Nemade K R, Waghuley S A. Indian Journal of Physics, 2014, 88(6), 577.
259 Kim J H, Mirzaei A, Woo Kim H, et al. Sensors and Actuators B:Chemical, 2019, 293, 210.
260 Xie B, Ding B, Mao P, et al. Small, 2022, 18(23), 2201802.
261 Zhu L, Wang J, Liu J, et al. Sensors and Actuators B, Chemical, 2022, 354, 131206.
262 Zhu Z, Xing X, Feng D, et al. Nanoscale, 2021, 13(29), 12669.
263 Wang D, Yang J, Bao L, et al. Journal of Colloid and Interface Science, 2021, 597, 29.
264 Ashkavand Z, Sadeghi E, Parvizi R, et al. ACS Applied Materials & Interfaces, 2020, 12(30), 34283.
265 Bai X, Lv H, Liu Z, et al. Journal of Hazardous Materials, 2021, 416, 125830.
266 Tang S Y, Yang C C, Su T Y, et al. ACS Nano, 2020, 14(10), 12668.
[1] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[2] 杨蕾, 朱茂兰, 翁威, 衷水平. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 22110058-9.
[3] 张育新, 葛广谞, 席乾, 刘川燕, 饶劲松, 姚克欣. 基于镁热还原硅藻土的硅基复合材料在电子器件中的应用[J]. 材料导报, 2022, 36(13): 21020114-12.
[4] 彭黎波, 叶诚曦, 童庆松, 翁景峥. 改性PVDF或替代PVDF粘结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180.
[5] 王瑞虎, 杨军, 邹德宁, 胡鹏, 向炜成. 金属材料微波烧结技术的研究进展[J]. 材料导报, 2021, 35(23): 23153-23161.
[6] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[7] 陈坤, 李君, 曲大为, 卢强. 基于LCA评价模型的动力电池回收阶段环境性研究[J]. 材料导报, 2019, 33(z1): 53-56.
[8] 高思雯, 龚先政, 孙博学. 典型锂电池中间相炭微球负极材料生产的能耗与碳排放分析[J]. 材料导报, 2018, 32(22): 4022-4026.
[9] 程前, 张婧. 废锂电池负极全组分绿色回收与再生[J]. 材料导报, 2018, 32(20): 3667-3672.
[10] 李超, 马成章, 黄绍军, 闵春刚, 黄秋玲, 孙晓东. 含1,3,4-噻二唑环聚合物的合成及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1891-1902.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed