Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040191-7    https://doi.org/10.11896/cldb.24040191
  金属与金属基复合材料 |
铁基非晶涂层在不同介质溶液中的摩擦学性能研究
李春玲1,*, 王荣福1, 翟海民2, 李文生3
1 兰州理工大学机电工程学院,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 西北师范大学物理与电子工程学院,兰州 730070
Tribological Properties of Fe-based Amorphous Coatings in Different Media Solutions
LI Chunling1,*, WANG Rongfu1, ZHAI Haimin2, LI Wensheng3
1 School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 38067KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用爆炸喷涂技术在316L不锈钢上制备了铁基非晶涂层,研究了涂层在质量分数为3.5% 的NaCl、0.01 mol/L NaOH和0.01 mol/L H2SO4溶液中的摩擦学性能。结果表明:制备的涂层具有完整的非晶结构,硬度远高于316L不锈钢基体,且孔隙率较低。由于溶液的润滑作用,涂层在介质溶液中的摩擦系数和磨损率都明显低于干滑动摩擦,XPS分析表明涂层表面形成了由Cr和Mo氧化物组成的耐腐蚀性钝化膜。在NaCl溶液中形成的大量氧化物使得涂层的磨损率最小(4.36×10-6 mm3·N-1·m-1),在H2SO4溶液中形成的SiO2膜也可有效地降低涂层的磨损率(4.61×10-6 mm3·N-1·m-1)。在NaOH溶液中,由于强碱对材料的腐蚀程度较高,涂层的磨损率最高(6.63×10-6 mm3·N-1·m-1),涂层在介质溶液中的磨损机制受机械和腐蚀磨损的协同作用,机械磨损占据主导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李春玲
王荣福
翟海民
李文生
关键词:  铁基非晶涂层  爆炸喷涂  湿摩擦  磨损机制    
Abstract: Fe-based amorphous coatings were prepared on 316L stainless steel substrates through detonation spraying. The tribological behavior of these coatings was investigated in various solutions, including 3.5% (mass fraction) NaCl, 0.01 mol/L NaOH, and 0.01 mol/L H2SO4. The findings reveal that the fabricated Fe-based amorphous coating possesses a homogenous amorphous structure and lower porosity, exhibiting significantly higher hardness than the 316L stainless steel substrate. Notably, the lubrication effect of the solutions results in a substantial reduction in the friction coefficient and wear rate of the coating compared to dry sliding conditions. By XPS, it’s found that a corrosion-resistant passive film composed primarily of Cr and Mo oxides is formed on the coating surface. In the NaCl solution, a large amount of oxides are generated to effectively minimize the wear rate to 4.36×10-6 mm3·N-1·m-1. Similarly, the SiO2 film formed in the H2SO4 solution also contributes to a reduced wear rate of 4.61×10-6 mm3·N-1·m-1. However, in the NaOH solution, the high corrosion potential of the strong alkali leads to the highest wear rate of 6.63×10-6 mm3·N-1·m-1 for the coating. The wear mechanism of the coating in these solutions is primarily influenced by the combined effects of mechanical and corrosive wear, with mechanical wear playing a dominant role.
Key words:  Fe-based amorphous coating    detonation spraying    wet friction    wear mechanism
发布日期:  2025-05-29
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(52075234);甘肃省自然科学基金(23JRRA802)
通讯作者:  *李春玲,兰州理工大学机电工程学院副教授、硕士研究生导师。 主要从事激光加工技术、材料表面改性等领域的研究工作。yxplcl@lut.edu.cn   
引用本文:    
李春玲, 王荣福, 翟海民, 李文生. 铁基非晶涂层在不同介质溶液中的摩擦学性能研究[J]. 材料导报, 2025, 39(11): 24040191-7.
LI Chunling, WANG Rongfu, ZHAI Haimin, LI Wensheng. Tribological Properties of Fe-based Amorphous Coatings in Different Media Solutions. Materials Reports, 2025, 39(11): 24040191-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040191  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040191
1 Yu W Y, Dong P F, Wu B L. Materials Reports, 2024, 38(12), 152 (in Chinese).
俞伟元, 董鹏飞, 吴保磊. 材料导报, 2024, 38(12), 152.
2 Bi R, Dong A P, Sun Y M, et al. Journal of Engineering Science, 2024, 46(5), 844 (in Chinese).
毕然, 董安平, 孙益民, 等. 工程科学学报, 2024, 46(5), 844.
3 Wang H Z, Yang D M, Zhao Z J, et al. Surface Technology, 2024, 53(19), 201 (in Chinese).
王红哲, 杨德明, 赵中杰, 等. 表面技术, 2024, 53(19), 201.
4 Yuan H Y, Zhai H M, Li W S, et al. Journal of Materials Engineering and Performance, 2021, 30(2), 905.
5 Xie L, Wang Y M, Xiong X, et al. Materials Transactions, 2018, 59(12), 1867.
6 Ge F F, Shao T, Jia C, et al. Surface & Coatings Technology, 2017, 332, 304.
7 Sukuroglu E E, Farzi H, Sukuroglu S, et al. Journal of Adhesion Science and Technology, 2017, 31(12), 1361.
8 Fu Y Q, Zhou F, Wang Q Z, et al. Corrosion Science, 2020, 165, 108385.
9 Ren P W, Meng H M, Xia Q J, et al. Corrosion Science, 2021, 180, 109185.
10 Wang Z, Chen X Y, Gong Y F, et al. Surface Engineering, 2018, 34(5), 392.
11 Zeng Q F, Xu Y T. Materials Today Communications, 2020, 24, 101261.
12 Liu X, Zhao X Q, An Y L, et al. Tribology International, 2018, 118, 421.
13 Yasir M, Zhang C, Wang W, et al. Materials & Design, 2015, 88, 207.
14 Zhou X X, Dong Q S, Zhu S S, et al. Journal of Adhesion Science and Technology, 2023, 37(6), 997.
15 Cui S, Zhai H M, Tong W, et al. Journal of Non-Crystalline Solids, 2023, 602, 122093.
16 Wang Q Z, Zhou F, Wang X N, et al. Applied Surface Science, 2011, 257(17), 7813.
17 Cui S, Zhai H M, Li W S, et al. Surface & Coatings Technology, 2020, 399, 126096.
18 Archard J F. Journal of Applied Physics, 1953, 24(8), 981.
19 Qin C L, Zhang W, Zhang Q S, et al. Journal of Materials Research, 2008, 23(8), 2091.
20 Hua N B, Liao Z L, Chen W Z, et al. Journal of Alloys and Compounds, 2017, 725, 403.
21 Zhang M D, Zhou F, Fu Y Q, et al. Tribology International, 2021, 160, 107059.
22 Guan X Y, Wang Y X, Wang J F, et al. Tribology International, 2016, 96, 307.
23 Kailer A, Amann T, Krummhauer O, et al. Wear, 2011, 271(9), 1922.
24 Ayyagari A, Barthelemy C, Gwalani B, et al. Materials Chemistry and Physics, 2018, 210, 162.
25 Hua N B, Chen W Z, Wang Q T, et al. Journal of Alloys and Compounds, 2018, 745, 111.
26 Zenebe D, Yi S, Kim S S. Journal of Materials Science, 2012, 47(3), 1446.
27 Jayaraj J, Kim Y C, Kim K B, et al. Journal of Alloys and Compounds, 2007, 434, 237.
28 Ren S F, Meng J H, Wang J B, et al. Wear, 2010, 269(1), 50.
[1] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[2] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[3] 俞伟元, 董鹏飞, 吴保磊. 超音速火焰喷涂氧燃比对铁基非晶涂层性能的影响[J]. 材料导报, 2024, 38(12): 22120200-6.
[4] 简琼艺, 王益雷, 姜喆瑞, 郭倩如, 张浩, 李可洲. 具有表面微图形化胰肠吻合口支架的构建及研究[J]. 材料导报, 2023, 37(19): 22040322-10.
[5] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[6] 张春芝, 尚希昌, 孙晟瑄, 单美琳, 王灿明, 崔洪芝. 激光熔覆高性能Fe基非晶涂层的研究进展[J]. 材料导报, 2022, 36(15): 21020101-8.
[7] 罗恒, 王优强, 张平. 双液淬火下7A09铝合金的干滑动摩擦磨损性能[J]. 材料导报, 2020, 34(24): 24109-24113.
[8] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[9] 樊伟, 田甜, 崔艳芳, 周淑娟. 采用爆炸喷涂法揭示新型(Sm1-XGdX)2Zr2O7缓烧蚀材料隔热机理[J]. 材料导报, 2019, 33(Z2): 134-137.
[10] 苏新, 王振生, 彭真, 郭建亭. 不同环境气氛中NiAl-2.5Ta-7.5Cr-1B-5Co-2.5Re合金的摩擦磨损特性[J]. 材料导报, 2019, 33(2): 288-292.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed