Synthesis of Y Molecular Sieves from Precursor Silanization and Its Catalytic Performance Evaluation
ZHAO Xiaomeng1, ZHAO Jun2,*, QIU Ping1, GONG Yanjun3,*, MENG Xiaoling4, YANG Quancheng1
1 School of Chemical Safety, North China Institute of Science and Technology, Langfang 065201, Hebei, China 2 School of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, Hebei, China 3 College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China 4 College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
Abstract: The crystallization rate of Y zeolite in a solid silicon source system was modified by introduction of organosilane into silicaluminate sol or gel. The addition of an appropriate amount of chloropropyl trimethoxysilane (CPTMO) to aluminosilicate sol or gel could promote nucleation and crystal growth, thus shortening crystallization time. The inclusion of aminopropyl triethoxysilane (APTES) could make the molecular sieve aggregate into balls. By introducing different types of organ silanes, the Si/Al ratio of Y molecular sieve could be adjusted in the range of 5.0—6.11. Compared with the NaY zeolite with low Si/Al ratio, the USY zeolite obtained through treating the high silica NaY zeolite showed higher reactivity in the liquid transalkylation of benzene with diethylbenzene.
1 Rao Z, Chen Y, Qiu K, et al. Materials Chemistry and Physics, 2023, 293, 126906. 2 Meng X, Meng L, Gong Y, et al. RSC Advances, 2021, 11(59), 37528. 3 Karimi M, Habibizadeh M, Rostamizadeh K, et al. Polymer Bulletin, 2019, 76(5), 2233. 4 Zhao X, Meng X, Shang Y, et al. Microporous and Mesoporous Materials, 2018, 264, 92. 5 Guo D D, Yang W M, Cao F, et al. Chemical Reaction Engineering and Technology, 2016, 32(5), 423(in Chinese). 郭冬冬, 杨为民, 曹锋, 等. 化学反应工程与工艺, 2016, 32(5), 423. 6 Zhu D, Wang L, Cui W, et al. Inorganic Chemistry Frontiers, 2022, 9(10), 2213. 7 Zhu D, Wang L, Zhang W, et al. Angewandte Chemie-International Edition, 2022, 61(23), e202117698. 8 Yuan D, He D, Xu S, et al. Microporous and Mesoporous Materials, 2015, 204, 1. 9 Datka J, Kolidziejski W, Klinowski J, et al. Catalysis Letters, 1993, 19(2-3), 159. 10 Holmberg B A, Wang H, Yan Y. Microporous and Mesoporous Materials, 2004, 74(1-3), 189. 11 He D, Yuan D, Song Z, et al. Chemical Communications, 2016, 52(86), 12765. 12 Wang F, Wang L, Zhu J, et al. Catalysis Today, 2010, 158(3-4), 409. 13 Wang J, Wang L Y, Zhu D L, et al. Chemical Journal of Chinese Universities, 2021, 42(1), 1(in Chinese). 王娟, 王林英, 朱大丽, 等. 高等学校化学学报, 2021, 42(1), 1. 14 Kacirek H, Lechert H. The Journal of Physical Chemistry, 1976, 80(12), 1291. 15 Song W, Li G, Grassian V H, et al. Environmental Science & Technology, 2005, 39(5), 1214. 16 Li Z, Wu Z, Mo G, et al. Instrumentation Science & Technology, 2014, 42(2), 128 17 Li Z. Chinese Physics C, 2013, 37(10), 108002. 18 Xin Q, Liang Z H. Petrochemical Technology, 2001(2), 157(in Chinese). 辛勤, 梁长海. 石油化工, 2001(2), 157. 19 Qin Z X, Shen B J, Gao X H, et al. Journal of Catalysis, 2011, 278(2), 266. 20 Jong R. Sohn S J D, Lunsford J H. Zeolites, 1986(6), 225. 21 Huang A, Wang N, Caro J. Microporous and Mesoporous Materials, 2012, 164, 294. 22 Zhao X, Liu R, Zhang H, et al. Journal of Applied Crystallography, 2017, 50(1), 231. 23 Qin Z X, Shen B J. CIESC Journal, 2016, 67(8), 3160(in Chinese). 覃正兴, 申宝剑. 化工学报, 2016, 67(8), 3160. 24 Szostak R. Studies in Surface Science and Catalysis, 2001, 137, 261.