Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 24040048-6    https://doi.org/10.11896/cldb.24040048
  无机非金属及其复合材料 |
前驱体硅烷化合成Y分子筛及其催化性能评价
赵晓萌1, 赵俊2,*, 邱苹1, 巩雁军3,*, 蒙晓玲4, 杨权成1
1 华北科技学院化工安全学院,河北 廊坊 065201
2 邢台学院化学与化工学院,河北 邢台 054001
3 中国石油大学(北京)化学工程与环境学院,北京 102249
4 广西科技大学生物与化学工程学院,广西 柳州 545006
Synthesis of Y Molecular Sieves from Precursor Silanization and Its Catalytic Performance Evaluation
ZHAO Xiaomeng1, ZHAO Jun2,*, QIU Ping1, GONG Yanjun3,*, MENG Xiaoling4, YANG Quancheng1
1 School of Chemical Safety, North China Institute of Science and Technology, Langfang 065201, Hebei, China
2 School of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, Hebei, China
3 College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
4 College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, China
下载:  全 文 ( PDF ) ( 3348KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过向硅铝酸盐溶胶或凝胶中引入有机硅烷来改变固体硅源体系中Y分子筛的晶化速率。研究表明,在硅铝溶胶或凝胶中引入适量的氯丙基三甲氧基硅烷(CPTMO)能够促进成核以及晶体生长,缩短晶化时间;引入氨丙基三乙氧基硅烷(APTES)会使分子筛聚集成球;通过引入不同种类的有机硅烷,Y分子筛的硅铝比(Si/Al比)在5.0~6.11范围可调。与低硅铝比Y分子筛相比,合成的高硅Y分子筛处理成的USY分子筛具有较高的水热稳定性,在苯与多乙苯液相烷基转移反应中表现出较高的反应活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓萌
赵俊
邱苹
巩雁军
蒙晓玲
杨权成
关键词:  硅铝酸盐  有机硅烷  Y分子筛  晶化速率    
Abstract: The crystallization rate of Y zeolite in a solid silicon source system was modified by introduction of organosilane into silicaluminate sol or gel. The addition of an appropriate amount of chloropropyl trimethoxysilane (CPTMO) to aluminosilicate sol or gel could promote nucleation and crystal growth, thus shortening crystallization time. The inclusion of aminopropyl triethoxysilane (APTES) could make the molecular sieve aggregate into balls. By introducing different types of organ silanes, the Si/Al ratio of Y molecular sieve could be adjusted in the range of 5.0—6.11. Compared with the NaY zeolite with low Si/Al ratio, the USY zeolite obtained through treating the high silica NaY zeolite showed higher reactivity in the liquid transalkylation of benzene with diethylbenzene.
Key words:  aluminosilicate    organic silane    Y molecular sieves    crystallization rate
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  O643.36  
基金资助: 河北省自然科学基金(E2022508047);邢台市科技创新人才专项(2022ZZ105)
通讯作者:  *赵俊,工学博士,邢台学院化学与化工学院副教授。研究方向主要为化工新材料研发和化工环境治理技术。在Chem.Eng.J、ChemElectroChem、J.Environ.Sci、《石油炼制与化工》等国内外期刊发表论文近20余篇。
巩雁军,教授、博士研究生导师。主要研究方向为先进分子筛催化剂设计制备及在能源转化过程中的应用。作为负责人完成多项国家自然科学基金、科技部国际交流合作以及省部级重点攻关等课题。作为负责人完成多项国家自然科学基金面上项目和科技部“973”课题及省部级重点攻关课题及企业联合项目等。在J.Mater.Chem.、Chem.Mater.、Green Chem.、Fuel Process Techology等期刊发表论文100多篇,获得发明专利10余项。zjqz925@163.com;gongyj@cup.edu.cn   
作者简介:  赵晓萌,讲师,工学博士,研究方向为新材料与催化剂工程。主持中央高校基本科研业务费资助项目1项。
引用本文:    
赵晓萌, 赵俊, 邱苹, 巩雁军, 蒙晓玲, 杨权成. 前驱体硅烷化合成Y分子筛及其催化性能评价[J]. 材料导报, 2024, 38(22): 24040048-6.
ZHAO Xiaomeng, ZHAO Jun, QIU Ping, GONG Yanjun, MENG Xiaoling, YANG Quancheng. Synthesis of Y Molecular Sieves from Precursor Silanization and Its Catalytic Performance Evaluation. Materials Reports, 2024, 38(22): 24040048-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24040048  或          http://www.mater-rep.com/CN/Y2024/V38/I22/24040048
1 Rao Z, Chen Y, Qiu K, et al. Materials Chemistry and Physics, 2023, 293, 126906.
2 Meng X, Meng L, Gong Y, et al. RSC Advances, 2021, 11(59), 37528.
3 Karimi M, Habibizadeh M, Rostamizadeh K, et al. Polymer Bulletin, 2019, 76(5), 2233.
4 Zhao X, Meng X, Shang Y, et al. Microporous and Mesoporous Materials, 2018, 264, 92.
5 Guo D D, Yang W M, Cao F, et al. Chemical Reaction Engineering and Technology, 2016, 32(5), 423(in Chinese).
郭冬冬, 杨为民, 曹锋, 等. 化学反应工程与工艺, 2016, 32(5), 423.
6 Zhu D, Wang L, Cui W, et al. Inorganic Chemistry Frontiers, 2022, 9(10), 2213.
7 Zhu D, Wang L, Zhang W, et al. Angewandte Chemie-International Edition, 2022, 61(23), e202117698.
8 Yuan D, He D, Xu S, et al. Microporous and Mesoporous Materials, 2015, 204, 1.
9 Datka J, Kolidziejski W, Klinowski J, et al. Catalysis Letters, 1993, 19(2-3), 159.
10 Holmberg B A, Wang H, Yan Y. Microporous and Mesoporous Materials, 2004, 74(1-3), 189.
11 He D, Yuan D, Song Z, et al. Chemical Communications, 2016, 52(86), 12765.
12 Wang F, Wang L, Zhu J, et al. Catalysis Today, 2010, 158(3-4), 409.
13 Wang J, Wang L Y, Zhu D L, et al. Chemical Journal of Chinese Universities, 2021, 42(1), 1(in Chinese).
王娟, 王林英, 朱大丽, 等. 高等学校化学学报, 2021, 42(1), 1.
14 Kacirek H, Lechert H. The Journal of Physical Chemistry, 1976, 80(12), 1291.
15 Song W, Li G, Grassian V H, et al. Environmental Science & Technology, 2005, 39(5), 1214.
16 Li Z, Wu Z, Mo G, et al. Instrumentation Science & Technology, 2014, 42(2), 128
17 Li Z. Chinese Physics C, 2013, 37(10), 108002.
18 Xin Q, Liang Z H. Petrochemical Technology, 2001(2), 157(in Chinese).
辛勤, 梁长海. 石油化工, 2001(2), 157.
19 Qin Z X, Shen B J, Gao X H, et al. Journal of Catalysis, 2011, 278(2), 266.
20 Jong R. Sohn S J D, Lunsford J H. Zeolites, 1986(6), 225.
21 Huang A, Wang N, Caro J. Microporous and Mesoporous Materials, 2012, 164, 294.
22 Zhao X, Liu R, Zhang H, et al. Journal of Applied Crystallography, 2017, 50(1), 231.
23 Qin Z X, Shen B J. CIESC Journal, 2016, 67(8), 3160(in Chinese).
覃正兴, 申宝剑. 化工学报, 2016, 67(8), 3160.
24 Szostak R. Studies in Surface Science and Catalysis, 2001, 137, 261.
[1] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed