Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24030209-8    https://doi.org/10.11896/cldb.24030209
  无机非金属及其复合材料 |
理化复合法处理高含水率淤泥的早期压缩特性研究
杨玉娇1, 章荣军1,2,*, 刘斯杰1, 张昆峰3, 郑俊杰1
1 武汉大学土木建筑工程学院,武汉 430000
2 水资源工程与调度全国重点实验室,武汉 430000
3 中铁十一局武汉重型装备有限公司,武汉 430300
Study on Early-age Compression Characteristics of Dredged Mud with High Water Content Treated by Physicochemical Combined Method
YANG Yujiao1, ZHANG Rongjun1,2,*, LIU Sijie1, ZHANG Kunfeng3, ZHENG Junjie1
1 School of Civil Engineering, Wuhan University, Wuhan 430000, China
2 State Key Laboratory of Water Resources Engineering and Management, Wuhan 430000, China
3 China Railway 11 Bureau Wuhan Heavy Equipment Corporation, Wuhan 430300, China
下载:  全 文 ( PDF ) ( 10895KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 新近提出的絮凝-固化-真空预压联合方法(理化复合法)是处理和资源化利用高含水率淤泥的可行、高效选项。该方法在早期涉及到复杂的固结固化耦合作用,探究改性淤泥的早期固结压缩特性是揭示固结固化耦合规律的前提。本工作开展了一系列一维固结压缩试验,探讨了固化剂掺量、等效初始含水率以及养护时间对理化复合法处理高含水率淤泥早期压缩特性的影响。试验结果表明,固化剂掺量与养护时间对理化复合法处理高含水率淤泥的压缩特性和结构特性具有显著影响,固化剂掺量越高或者养护时间越长,固结屈服应力越大,结构性越强;等效初始含水率对理化复合法处理高含水率淤泥结构性的影响程度较低。通过引入结构性土压缩模型,提出了理化复合法处理高含水率淤泥屈服应力和破坏指数的预测方程,并基于试验结果建立了一种估算不同胶结程度的理化复合法处理高含水率淤泥压缩曲线的简化方法,可为理化复合法处理高含水率淤泥填筑工程实践奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨玉娇
章荣军
刘斯杰
张昆峰
郑俊杰
关键词:  高含水率淤泥  理化复合法  固结  固化  压缩特性    
Abstract: The newly proposed method of vacuum preloading-flocculation-solidification combined treatment (physicochemical combined method) is being widely applied as a viable and efficient option for the treatment and resource utilization of high water content dredged mud. Complex coupling consolidation-solidification effect is involved in the early stage of this method, and exploring the early compression characteristics of modified mud is a prerequisite for revealing the coupling consolidation-solidification law. In this work, a series of laboratory tests such as one-dimensional consolidation and compression were carried out to investigate the effects of curing agent dosage, equivalent initial water content, and curing age on the early compression characteristics of high water content dredged mud treated by physicochemical combined method. The test results show that the degree of curing agent and curing age have significant effects on the compression characteristics and structural properties of high water content mud treated by the physicochemical combined method. The larger the degree of curing agent or curing age, the higher the yield stress and the stronger the structural properties of consolidation. In contrast, the equivalent initial water content has a lower degree of influence on the structural properties of high water content mud treated by the physicochemical combined method. The prediction equations for yield stress and destructing index are established by applying the concept of the compression model of structured soils. Finally, a simplified method for estimating the compression curve of high water content dredged mud treated by physicochemical combined method with different degrees of cementation is proposed based on test results. Laying a theoretical foundation for high water content dredged mud treated by physicochemical combined method as fill material for embankment engineering.
Key words:  dredged mud at high water content    physicochemical combined method    consolidation    solidification    compression behaviour
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TU411  
基金资助: 湖北省重点研发计划项目(2022BAA068);国家自然科学基金(52122806;52208367;52338007)
通讯作者:  *章荣军,武汉大学土木建筑工程学院教授、博士研究生导师,国家级青年人才。主要研究领域包括:(1)废弃泥(浆)处理与资源化利用;(2)软土地基处理;(3)城市地下工程风险评估及安全防控。ce_zhangrj@whu.edu.cn   
作者简介:  杨玉娇,武汉大学土木建筑工程学院硕士研究生,主要从事废弃泥(浆)处理与资源化利用领域方面的研究。
引用本文:    
杨玉娇, 章荣军, 刘斯杰, 张昆峰, 郑俊杰. 理化复合法处理高含水率淤泥的早期压缩特性研究[J]. 材料导报, 2025, 39(13): 24030209-8.
YANG Yujiao, ZHANG Rongjun, LIU Sijie, ZHANG Kunfeng, ZHENG Junjie. Study on Early-age Compression Characteristics of Dredged Mud with High Water Content Treated by Physicochemical Combined Method. Materials Reports, 2025, 39(13): 24030209-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030209  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24030209
1 Weng J X.Journal of Civil Engineering and Management, 2012, 29(3), 81 (in Chinese).
翁佳兴. 土木工程与管理学报, 2012, 29(3), 81.
2 Hu Z W. Properties of the modification for solidified mud and field test study. Master’s Thesis, National Wuhan University of Technology, China, 2017 (in Chinese).
胡中威. 改性淤泥固化土的性质及现场试验研究. 硕士学位论文, 武汉理工大学, 2017.
3 Ma M S.Transpoworld, 2011(9), 112(in Chinese).
马明生. 交通世界(建养·机械), 2011(9), 112.
4 Xu Z H, Zhang R J, Zheng J J, et al.Journal of Civil and Environmental Engineering, 2021, 43(5), 10 (in Chinese).
徐志豪, 章荣军, 郑俊杰, 等. 土木与环境工程学报(中英文), 2021, 43(5), 10.
5 Zheng Y L, Zhang R J, Zheng J J, et al.Rock and Soil Mechanics, 2019, 40(8), 3107 (in Chinese).
郑耀林, 章荣军, 郑俊杰, 等. 岩土力学, 2019, 40(8), 3107.
6 Zhang R J, Dong C Q, Lu Z, et al.Construction and Building Materials, 2019, 228, 116742.
7 Wang T, Wu Z K, Yue Y Y, et al.Journal of Salt Science and Chemical Industry, 2022, 51(3), 5 (in Chinese).
王韬, 吴志康, 岳元媛, 等. 盐科学与化工, 2022, 51(3), 5.
8 Wang D X, Tang Y K, Wu L F.Rock and Soil Mechanics, 2020, 41(12), 3929 (in Chinese).
王东星, 唐弈锴, 伍林峰. 岩土力学, 2020, 41(12), 3929.
9 Kang G, Tsuchida T, Athapaththu A.Engineering Geology, 2016, 209, 163.
10 Zheng Y L. Experimental study on strength characteristics of hydraulically dredged mud slurry treated by physicochemical composite method. Master’s Thesis, Huazhong University of Science and Technology, China, 2020 (in Chinese).
郑耀林. 理化复合法处理高含水率淤泥(浆)的强度特性试验研究. 硕士学位论文, 华中科技大学, 2020.
11 Tu L W. Research on applicability of physicochemical composite method in solidification treatment of mud (slurry). Master’s Thesis, Huazhong University of Science and Technology, China, 2020 (in Chinese).
屠林伟. 理化复合法在淤泥(浆)固化处理中的适用性研究. 硕士学位论文, 华中科技大学, 2020.
12 Lu Z. Experimental study on strength behavior of dredged mud slurry at extra-high water content treated by flocculation-solidification combined method. Master’s Thesis, Huazhong University of Science and Technology, China, 2018 (in Chinese).
陆展. 絮凝-固化联合处理超高含水率淤泥浆强度特性试验研究. 硕士学位论文, 华中科技大学, 2018.
13 Deng Y F, Liu S Y, Huang J A, et al.Grouting and Deep Mixing, 2012, 2012, 1800.
14 Burland J B.Géotechnique, 1990, 40(3), 329.
15 Liu D M, Carter P J.Géotechnique, 1999, 49(1), 43.
16 Liu D M, Carter P J.Géotechnique, 2000, 50(4), 479.
17 Du Y J, Horpibulsuk S, Wei M L, et al.Soils and Foundations, 2014, 54(5), 1018.
18 Ding J W, Wu X C, Li H, et al.Journal of Engineering Geology, 2012, 20(4), 627 (in Chinese).
丁建文, 吴学春, 李辉, 等. 工程地质学报, 2012, 20(4), 627.
19 Huang Y H, Zhu W, Zhou X Z, et al.Rock and Soil Mechanics, 2012, 33(10), 2923 (in Chinese).
黄英豪, 朱伟, 周宣兆, 等. 岩土力学, 2012, 33(10), 2923.
20 Xu J J, Fu Y, Chen Y B.Journal of Ground Improvement, 2022, 4(S1), 14 (in Chinese).
徐家俊, 傅勇, 陈洋彬. 地基处理, 2022, 4(S1), 14.
21 Guo W, Chu J.Géotechnique, 2017, 67(6), 516.
22 Butterfield R.Géotechnique, 1979, 29(4), 469.
23 Yang A W, Zhong X K, Liang C, et al.Rock and Soil Mechanics, 2017, 38(9), 2589 (in Chinese).
杨爱武, 钟晓凯, 梁超, 等. 岩土力学, 2017, 38(9), 2589.
24 Gan Y X, Zhu W, Lyu Y Y, et al.Chinese Journal of Geotechnical Engineering, 2016, 38(4), 755 (in Chinese).
甘雅雄, 朱伟, 吕一彦, 等. 岩土工程学报, 2016, 38(4), 755.
25 Horpibulsuk S, Miura N, Nagaraj T S.Géotechnique, 2003, 53(4), 439.
26 Zhang R J, Lu Y T, Tan T S, et al.Journal of Geotechnical and Geoenvi-ronmental Engineering, 2014, 140(8), 04014045.
27 Xu R Q, Wen J Y, Wang X, et al.Journal of Hunan University(Natural Sciences), 2019, 46(11), 146 (in Chinese).
徐日庆, 文嘉毅, 王旭, 等. 湖南大学学报(自然科学版), 2019, 46(11), 146.
28 Sun X H, Zhu W, Qian X D, et al.Journal of Materials in Civil Engineering, 2014, 26(5), 878.
29 Horpibulsuk S, Shibuya S, Fuenkajorn K, et al.Canadian Geotechnical Journal, 2007, 44(2), 173.
30 Horpibulsuk S, Rachan R, Suddeepong A, et al.Engineering Geology, 2013, 159, 59.
31 Horpibulsuk S, Bergado T D, Lorenzo A G.Géotechnique, 2004, 54(2), 151.
[1] 岳汉威, 杨德博, 崔竹, 朱治国, 于雷, 朱永昌. 水泥固化中、低放射性水平废物的机理、应用和挑战:以90Sr为例[J]. 材料导报, 2025, 39(8): 24040159-7.
[2] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[3] 王竟宇, 詹良通, 梁腾, 陈萍. 铸余渣固化工程渣土再生路基填料的性能与机制[J]. 材料导报, 2025, 39(5): 24020088-7.
[4] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[5] 杜习贤, 李刚, 王爱芹, 曹澳利, 孙建仁. 水泥基材料氯离子的固化进展研究[J]. 材料导报, 2025, 39(13): 24040220-14.
[6] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[7] 董舵, 管婧宇, 王子祺, 肖逸. 核电厂放射性废物安全处置技术研究[J]. 材料导报, 2025, 39(11): 24110091-17.
[8] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[9] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[10] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[11] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[12] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[13] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[14] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[15] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed