Study on the Structure of Air-Quenched High-Titanium Slag
XU Zixin1, LI Jun2,*, LU Zhongyuan2, LI Xiaoyin1, XU Chen1
1 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China 2 State Key Laboratory of Environment Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
Abstract: The air-quenched rapid-cooled high-titanium slag was prepared, and the effect of air-quenched rapid-cooling on its structure was studied and compared with naturally cooled and water-quenched rapid-cooled high-titanium slag. The results show that naturally cooled high-titanium slag has more crystalline minerals, Q0, Q1, Q2 and Q3 silicate structures coexist, and Ti is dominated by tetra-ligand and hexa-ligand; water-quenched high-titanium slag has lower crystalline mineral species and content, silicate structures are dominated by Q0, Q1 and Q2, and Ti4+ enters the glass network in the form of [TiO5]; air-quenched high-titanium slag is continuous glass phase, silicate structures are dominated by Q0 and Q2, and Ti in coarse particles is predominantly pentacoordinated, and tetra-and hexacoordinated Ti anion clusters appear as their particle size decreases. The overall increase in coordination number of Ti and its entry into the vitreous structure to form a glass network skeleton by connecting with silica-aluminate enhances the glass network polymerization and improves the chemical stability of air-quenched high-titanium slag.
徐梓馨, 李军, 卢忠远, 李晓英, 徐陈. 风淬急冷对高钛矿渣结构的影响研究[J]. 材料导报, 2024, 38(17): 23010005-7.
XU Zixin, LI Jun, LU Zhongyuan, LI Xiaoyin, XU Chen. Study on the Structure of Air-Quenched High-Titanium Slag. Materials Reports, 2024, 38(17): 23010005-7.
1 Li X Y, Li J, Lu Z Y, et al. Construction and Building Materials, 2020, 234, 117342. 2 Luo J H, Qiu K H, Qiu Y C, et al. In:Proceedings of the 2nd International Conference on Metallurgy Technology and Materials (ICMTM). Hong Kong, 2013, pp.25. 3 Wang H B, Feng K Q, Sun Q Z. Advances in Applied Ceramics, 2018, 117(5), 312. 4 He D, Gao C, Pan J, et al. Ceramics International, 2018, 44(2), 1384. 5 Hou X, Wang D, Shi Y, et al. Materials, 2020, 13(5), 1239. 6 Li J, Luo J, Lu Z Y, et al. Journal of the Chinese Ceramic Society, 2018, 46(11), 1603 (in Chinese). 李军, 罗健, 卢忠远, 等. 硅酸盐学报, 2018, 46(11), 1603. 7 Wu J J, Wang H, Zhu X, et al. Applied Thermal Engineering, 2015, 89, 494. 8 Wang L, Zhang Y, Ke H, et al. Applied Thermal Engineering, 2021, 184, 116295. 9 Gan L, Wang H F, Li X P, et al. Journal of Iron and Steel Research International, 2015, 22(3), 219. 10 Sofilić T, Merle V, Rastovan-Mio A, et al. Archives of Metallurgy and Materials, 2010, 55(3), 657. 11 Barati M, Esfahani S, Utigard T A. Energy, 2011, 36(9), 5440. 12 Barati M, Jahanshahi S. Journal of Sustainable Metallurgy, 2020, 6(2), 191. 13 Zhang H, Wang H, Zhu X, et al. Applied Energy, 2013, 112, 956. 14 Wang L L, Zhang Y Z, Long Y. Journal of Iron and Steel Research International, 2021, 28(1), 10. 15 Du T, Sun H J, Peng T J, et al. Industrial Minerals & Processing, 2021, 50(2), 40(in Chinese). 杜婷, 孙红娟, 彭同江, 等. 化工矿物与加工, 2021, 50(2), 40. 16 Shen M, Wang M, Wang Q, et al. Chemical Engineering Journal, 2021, 425, 131513. 17 Kim G H, Kim C S, Sohn I. ISIJ International, 2013, 53(1), 170. 18 Kim J, Sohn I. Journal of Non-Crystalline Solids, 2013, 379, 235. 19 Kim J B, Sohn I. ISIJ International, 2014, 54(9), 2050. 20 Park J H, Min D J, Song H S. ISIJ International, 2002, 42(4), 344. 21 Zhang Z, Xie B, Zhou W, et al. ISIJ International, 2016, 56(5), 828. 22 Luo R, Dawood K, Jamil M K, et al. Mathematical Biosciences and Engineering, 2023, 20(5), 8031. 23 Mcmillan P, Ross N. Physics and Chemistry of Minerals, 1988, 16(1), 21. 24 Shu Q, Wang Z, Chou K. Steel Research International, 2011, 82(7), 779. 25 Zheng K, Liao J, Wang X, et al. Journal of Non-Crystalline Solids, 2013, 376, 209. 26 Kim J, Choi J, Han I, et al. Journal of Non-Crystalline Solids, 2016, 432, 218. 27 Huang Q, Liu J, He X, et al. Journal of Non-Crystalline Solids, 2021, 555, 120531. 28 Li J, Huang J, Feng H, et al. Journal of Non-Crystalline Solids, 2022, 576, 121243. 29 Mikulas T, Fang Z, Gole J L, et al. Chemical Physics Letters, 2012, 539, 58.