Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23010005-7    https://doi.org/10.11896/cldb.23010005
  无机非金属及其复合材料 |
风淬急冷对高钛矿渣结构的影响研究
徐梓馨1, 李军2,*, 卢忠远2, 李晓英1, 徐陈1
1 西南科技大学材料与化学学院,四川 绵阳 621010
2 西南科技大学环境友好能源材料国家重点实验室,四川 绵阳 621010
Study on the Structure of Air-Quenched High-Titanium Slag
XU Zixin1, LI Jun2,*, LU Zhongyuan2, LI Xiaoyin1, XU Chen1
1 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 State Key Laboratory of Environment Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 31169KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作制得了风淬急冷高钛矿渣,研究了风淬急冷对其结构的影响,并将其与自然冷却和水淬急冷高钛矿渣进行对比。结果表明:自然冷却高钛矿渣中结晶矿物较多,Q0、Q1、Q2和Q3硅酸盐结构共存,Ti以四配位和六配位为主;水淬急冷高钛矿渣中结晶矿物的种类及含量降低,硅酸盐结构以Q0、Q1和Q2为主,Ti4+以[TiO5]的形式进入到玻璃网络中;风淬急冷高钛矿渣为连续玻璃相,硅酸盐结构以Q0和Q2为主,粗颗粒中Ti以五配位为主,随其粒径减小,四配位和六配位Ti阴离子团出现。Ti的配位数整体升高并进入玻璃体结构中与硅铝酸盐连接形成玻璃网络骨架,增强了玻璃网络聚合度,提高了风淬高钛矿渣的化学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐梓馨
李军
卢忠远
李晓英
徐陈
关键词:  高钛矿渣  风淬急冷  硅酸盐结构    
Abstract: The air-quenched rapid-cooled high-titanium slag was prepared, and the effect of air-quenched rapid-cooling on its structure was studied and compared with naturally cooled and water-quenched rapid-cooled high-titanium slag. The results show that naturally cooled high-titanium slag has more crystalline minerals, Q0, Q1, Q2 and Q3 silicate structures coexist, and Ti is dominated by tetra-ligand and hexa-ligand; water-quenched high-titanium slag has lower crystalline mineral species and content, silicate structures are dominated by Q0, Q1 and Q2, and Ti4+ enters the glass network in the form of [TiO5]; air-quenched high-titanium slag is continuous glass phase, silicate structures are dominated by Q0 and Q2, and Ti in coarse particles is predominantly pentacoordinated, and tetra-and hexacoordinated Ti anion clusters appear as their particle size decreases. The overall increase in coordination number of Ti and its entry into the vitreous structure to form a glass network skeleton by connecting with silica-aluminate enhances the glass network polymerization and improves the chemical stability of air-quenched high-titanium slag.
Key words:  high-titanium slag    air quenching    silicate structure
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  O751  
基金资助: 四川省科技计划项目(2019ZDZX0024);国家自然科学基金(51402246)
通讯作者:  *李军,西南科技大学环境友好能源材料国家重点实验室副研究员、硕士研究生导师。主要研究领域包括绿色低碳水泥基建筑材料、功能建筑材料和特色大宗固废安全高效材料转化。承担完成国家自然科学基金项目1项、国家科技支撑计划子课题2项、国家“973”计划前期专项子课题1项,在国内外发表学术论文50余篇,申请发明专利30余项,获得国家发明专利授权20余项。lijun@swust.edu.cn   
作者简介:  徐梓馨,2020年6月于西南科技大学获得工学学士学位。现为西南科技大学材料与化学学院硕士研究生,在李军副研究员的指导下进行研究。目前主要研究领域为先进复合建筑材料。
引用本文:    
徐梓馨, 李军, 卢忠远, 李晓英, 徐陈. 风淬急冷对高钛矿渣结构的影响研究[J]. 材料导报, 2024, 38(17): 23010005-7.
XU Zixin, LI Jun, LU Zhongyuan, LI Xiaoyin, XU Chen. Study on the Structure of Air-Quenched High-Titanium Slag. Materials Reports, 2024, 38(17): 23010005-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010005  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23010005
1 Li X Y, Li J, Lu Z Y, et al. Construction and Building Materials, 2020, 234, 117342.
2 Luo J H, Qiu K H, Qiu Y C, et al. In:Proceedings of the 2nd International Conference on Metallurgy Technology and Materials (ICMTM). Hong Kong, 2013, pp.25.
3 Wang H B, Feng K Q, Sun Q Z. Advances in Applied Ceramics, 2018, 117(5), 312.
4 He D, Gao C, Pan J, et al. Ceramics International, 2018, 44(2), 1384.
5 Hou X, Wang D, Shi Y, et al. Materials, 2020, 13(5), 1239.
6 Li J, Luo J, Lu Z Y, et al. Journal of the Chinese Ceramic Society, 2018, 46(11), 1603 (in Chinese).
李军, 罗健, 卢忠远, 等. 硅酸盐学报, 2018, 46(11), 1603.
7 Wu J J, Wang H, Zhu X, et al. Applied Thermal Engineering, 2015, 89, 494.
8 Wang L, Zhang Y, Ke H, et al. Applied Thermal Engineering, 2021, 184, 116295.
9 Gan L, Wang H F, Li X P, et al. Journal of Iron and Steel Research International, 2015, 22(3), 219.
10 Sofilić T, Merle V, Rastovan-Mio A, et al. Archives of Metallurgy and Materials, 2010, 55(3), 657.
11 Barati M, Esfahani S, Utigard T A. Energy, 2011, 36(9), 5440.
12 Barati M, Jahanshahi S. Journal of Sustainable Metallurgy, 2020, 6(2), 191.
13 Zhang H, Wang H, Zhu X, et al. Applied Energy, 2013, 112, 956.
14 Wang L L, Zhang Y Z, Long Y. Journal of Iron and Steel Research International, 2021, 28(1), 10.
15 Du T, Sun H J, Peng T J, et al. Industrial Minerals & Processing, 2021, 50(2), 40(in Chinese).
杜婷, 孙红娟, 彭同江, 等. 化工矿物与加工, 2021, 50(2), 40.
16 Shen M, Wang M, Wang Q, et al. Chemical Engineering Journal, 2021, 425, 131513.
17 Kim G H, Kim C S, Sohn I. ISIJ International, 2013, 53(1), 170.
18 Kim J, Sohn I. Journal of Non-Crystalline Solids, 2013, 379, 235.
19 Kim J B, Sohn I. ISIJ International, 2014, 54(9), 2050.
20 Park J H, Min D J, Song H S. ISIJ International, 2002, 42(4), 344.
21 Zhang Z, Xie B, Zhou W, et al. ISIJ International, 2016, 56(5), 828.
22 Luo R, Dawood K, Jamil M K, et al. Mathematical Biosciences and Engineering, 2023, 20(5), 8031.
23 Mcmillan P, Ross N. Physics and Chemistry of Minerals, 1988, 16(1), 21.
24 Shu Q, Wang Z, Chou K. Steel Research International, 2011, 82(7), 779.
25 Zheng K, Liao J, Wang X, et al. Journal of Non-Crystalline Solids, 2013, 376, 209.
26 Kim J, Choi J, Han I, et al. Journal of Non-Crystalline Solids, 2016, 432, 218.
27 Huang Q, Liu J, He X, et al. Journal of Non-Crystalline Solids, 2021, 555, 120531.
28 Li J, Huang J, Feng H, et al. Journal of Non-Crystalline Solids, 2022, 576, 121243.
29 Mikulas T, Fang Z, Gole J L, et al. Chemical Physics Letters, 2012, 539, 58.
[1] 吕云卓, 覃作祥, 陆兴. 高通量开发非晶合金的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 112-115.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed