Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22120042-5    https://doi.org/10.11896/cldb.22120042
  高分子与聚合物基复合材料 |
SiO2包覆膜对介孔Pd/SiO2催化蒽醌加氢制备双氧水的作用
李大卫1,2, 王树东2,*, 苏宏久2, 严华1,2
1 中国科学院大学能源学院,北京100049
2 中国科学院大连化学物理研究所,辽宁 大连 116023
Effect of Thin SiO2 Film Coating Pd on Mesoporous Pd/SiO2 Catalyzing Hydrogenation of Anthraquinone to Prepare H2O2
LI Dawei1,2, WANG Shudong2,*, SU Hongjiu2, YAN Hua1,2
1 Energy College, University of Chinese Academy of Sciences, Beijing 100049, China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 7043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以2-戊基蒽醌生产过氧化氢的反应过程为研究背景,使用平均孔径为12 nm的介孔球形氧化硅载体,利用强静电吸附(SEA)法制备了Pd/SiO2催化剂,并使用四乙氧基硅烷包覆催化剂所负载的Pd颗粒,制备出用于蒽醌加氢的Pd@SiO2/SiO2球形颗粒催化剂。相较于未经包覆修饰的Pd/SiO2球形催化剂,Pd@SiO2/SiO2催化剂表现出较高的100%选择性,以及高加氢活性,时空产率高出16.4%;同时,利用物理吸附(BET)、粉末X射线衍射(XRD)、透射电镜(TEM)、H2-TPR、XPS等手段对所制备的Pd@SiO2/SiO2及Pd/SiO2催化剂进行表征,可观察到经包覆后,Pd颗粒表面有0.1 nm左右的SiO2膜,催化剂的比表面积和孔容相较于载体有所增加,而孔径则减小;H2-TPR及XPS表征结果则显示,在Pd@SiO2/SiO2上,由于SiO2薄膜的包覆作用,Pd@SiO2/SiO2的Pd0物种的结合能更高,Pd颗粒与载体间的相互作用更强;上述制备方法均使得Pd@SiO2/SiO2催化剂表现出较高的选择性及活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李大卫
王树东
苏宏久
严华
关键词:  介孔氧化硅材料  双氧水  蒽醌加氢  钯贵金属催化  氧化硅包覆  高选择性  高活性    
Abstract: Based on the background of the hydrogenation of anthraquinone to produce hydrogen peroxide, Pd/SiO2 catalyst was prepared using mesoporous spherical silica support with an average pore diameter of 12 nm by strong electrostatic adsorption (SEA) method, and Pd particles supported on the catalyst were coated with TEOS to prepare Pd@SiO2/SiO2 spherical particle catalyst for anthraquinone hydrogenation as well. Compared with unmodified Pd/SiO2 spherical catalyst, Pd@SiO2/SiO2 catalyst showed better hydrogenation activity, and the space-time yield was 16.4% higher than that of Pd/SiO2. Besides, it also exhibits 100% selectivity. The prepared Pd@SiO2/SiO2 and Pd/SiO2 catalysts were characterized by physical adsorption (BET), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), H2-TPR, XPS. After coating, it can be seen that the Pd particle surface has a thin SiO2 film of 0.1 nm, and the specific surface area and pore volume of the catalyst increase, compared with the support, while the pore size decreases. The H2-TPR and XPS characterization results show that, due to the coating of SiO2 film, the binding energy of Pd0 species on Pd@SiO2/SiO2 is higher, and the interaction between Pd particles and carriers is stronger. The above methods make Pd@SiO2/SiO2 catalyst shows higher selectivity and activity.
Key words:  mesoporous silica    hydrogen peroxide    anthraquinone hydrogenation    palladium noble metal catalyst    silica coating    high selectivity    high activity
发布日期:  2023-12-19
ZTFLH:  TQ11  
通讯作者:  *王树东,中国科学院大连化学物理研究所研究员、博士研究生导师。1985 年在太原工业大学获得工学学士学位,1993 年在大连理工大学获得工学博士学位,毕业后到中科院大连化学物理研究所工作。1997年任研究员,现任现代化工研究室主任、能源环境工程组组长。2001年3月—9月到日本资源环境综合技术研究所作JSPS访问学者;2005年2月—5月到法国普瓦提(Poitiers)大学作访问教授。研究领域广泛,其中包括工业烟道脱硝过程研究、氢源燃料电池的制备、VOC 治理、MOFs 吸附材料的制备、高效液相色谱柱的制备、蒽醌加氢制备双氧水的制备工艺等。截至目前,共发表论文90余篇,申请中国专利20余项,日本专利一项。wangsd@dicp.ac.cn   
作者简介:  李大卫,2013年6月、2015年6月分别于大连理工大学和丹麦技术大学获得工学学士学位和硕士学位。现为中国科学院大学能源学院博士研究生,在王树东教授的指导下进行研究。目前主要研究领域为氧化硅材料负载贵金属催化剂进行氢化反应及其优化、分子筛掺杂后实现氢化效果的提升等。工作学习期间发表专利5篇,参与研究性文章4篇。
引用本文:    
李大卫, 王树东, 苏宏久, 严华. SiO2包覆膜对介孔Pd/SiO2催化蒽醌加氢制备双氧水的作用[J]. 材料导报, 2023, 37(24): 22120042-5.
LI Dawei, WANG Shudong, SU Hongjiu, YAN Hua. Effect of Thin SiO2 Film Coating Pd on Mesoporous Pd/SiO2 Catalyzing Hydrogenation of Anthraquinone to Prepare H2O2. Materials Reports, 2023, 37(24): 22120042-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120042  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22120042
1 Campos-Martin J M, Blanco-Brieva G, Fierro J L G. Angewandte Chemie International Edition, 2006, 45 (42), 6962.
2 Ferrandez D M P, Croon M H J M D, Schouten J C. Industrial & Engineering Chemistry Research, 2013, 52 (30), 10126.
3 Russo V, Tesser R, Santacesaria E. Industrial & Engineering Chemistry Research, 2013, 52 (3), 1168.
4 Kim H J, Jeon Y K, Park J I. Journal of Molecular Catalysis A-Chemical, 2013, 378(11), 232.
5 Eriksson M, Petersson L G. Surface Science, 1994, 311(1-2), 139.
6 Chen Q. Journal of Cleaner Production, 2006, 14 (8), 708.
7 Thènard. Annales de Chimie et de Physique, 1818, 2(8), 306.
8 Santacesaria E, Serio M D, Russo A. Chemical Engineering Journal, 1999, 54, 2799.
9 Kosydar R, Drelinkiewicz A, Lalik E, et al. Applied Catalysis A:Gene-ral, 2011, 402, 121.
10 Drelinkiewicz A, Waksmundzka-Góra A, Makowski W. Catalysis Communications, 2005, 6, 347.
11 Drelinkiewicz A, Pukkinen A, Kangas R, et al. Catalysis Letters, 2004, 94, 157.
12 Li X, Su H, Ren G, et al. RSC Advances, 2015, 5, 100968.
13 Liu J, Duan S, Xu J, et al. Microscopy and Microanalysis, 2016, 22(S3), 860.
14 Li X, Su H, Li D. Applied Catalysis A:General, 2016, 528, 168.
15 Li D, Su H, Yan Y, et al. Catalysts, 2022, 12(10),1156.
16 Chen Y, Zhang S, Wang Q, et al. Petroleum Processing and Petrochemicals, 2021, 52(6), 39.
17 Liang W, Fu J, Chen H, et al. Materials Letters, 2021, 283, 128857.
18 Belykh L B, Skripov N I, Sterenchuk T P, et al. European Journal of Inorganic Chemistry, 2021, 2021(44), 4586.
[1] 肖俊华,詹满军,陈秀兰,王 健,左迎峰,吴义强. 双氧水对镁系无机泡沫材料性能和孔结构的影响[J]. 《材料导报》期刊社, 2017, 31(24): 96-100.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed