Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22050307-6    https://doi.org/10.11896/cldb.22050307
  无机非金属及其复合材料 |
钡离子对单硫型水化硫铝酸钙氯离子固化作用的影响
李奥森1, 丛贇2, 张琰3,*, 刘佳龙3, 韩志伟3
1 国家电网有限公司,北京 100031
2 国网浙江省电力有限公司舟山供电公司,浙江 舟山 316021
3 中国电力科学研究院有限公司,北京 100192
Effect of Barium Ion on Chloride Binding of Monosulfoaluminate
LI Aosen1, CONG Yun2, ZHANG Yan3,*, LIU Jialong3, HAN Zhiwei3
1 State Grid Corporation of China, Beijing 100031, China
2 Zhoushan Power Supply Company of State Grid Zhejiang Electric Power Company, Zhoushan 316021, Zhejiang, China
3 China Electric Power Research Institute, Beijing 100192, China
下载:  全 文 ( PDF ) ( 9643KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 单硫型水化硫铝酸钙(AFm)作为水泥水化主要产物之一,能够利用层间硫酸根离子与氯离子发生离子交换反应实现氯离子固化,在提升水泥基材料氯离子固化能力和解决钢筋混凝土氯离子侵蚀难题方面发挥着关键作用。为提升AFm的氯离子固化能力,本研究在浸有AFm的氯盐溶液中引入不同浓度的钡离子,对比了不同龄期下AFm试样的氯离子固化能力,分析了不同龄期下AFm试样物相组成、热学性质和微观形貌的变化,并分析了溶液中钡离子浓度随龄期变化规律,探究出钡离子浓度对AFm氯离子固化的影响及其作用机理。结果表明,钡离子能够消耗AFm中硫酸根离子生成硫酸钡沉淀,促进AFm与氯离子发生插层反应,显著提升AFm的氯离子固化能力。不同浓度的钡离子对AFm氯离子固化作用机理存在差异,低浓度钡离子能够促进体系钙矾石(AFt)和Friedel盐生成,高浓度钡离子主要促进体系Kuzel盐生成。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李奥森
丛贇
张琰
刘佳龙
韩志伟
关键词:  单硫型水化硫铝酸钙(AFm)  钡离子  氯离子固化  硫酸钡  Friedel盐  Kuzel盐    
Abstract: As one of the primary hydrated products of cement, monosulfoaluminate (AFm) could realize chloride binding via exchanging ions between interlayer sulfate ions and chloride ions, which played a crucial role in enhancing the chloride binding capacity of cementitious materials and reducing the corrosion risk of reinforcing concrete. To enhance the chloride binding capacity of AFm, barium ion with different concentrations was introduced into chloride salt solutions immersing AFm, the chloride binding capacity of AFm sample at each age was compared. The phase compositions, thermal properties and microscopic morphology of AFm sample at each age were analyzed, and the change rule of barium ion concentration in the solution at each age was analyzed. The effect of barium ion with different concentrations on chloride binding of AFm was discussed, and the mechanisms behind were investigated. The results indicate that barium ion can consume sulfate ions of AFm to promote the ion exchange reaction between AFm and chloride ions and enhance the chloride binding capacity of AFm. But the mechanism of AFm on chloride binding is different with different concentrations of barium ions. Barium ion with low concentration promotes the formation of AFt and Friedel's salt, while ba-rium ion with high concentration generates more Kuzel's salt.
Key words:  monosulfoaluminate    barium ion    chloride binding    barite    Friedel's salt    Kuzel's salt
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TU 528.01  
基金资助: 国家电网有限公司总部科技项目(5500-202155374A-0-0-00)
通讯作者:  *张琰,2004—2009年在清华大学获得博士学位,主要从事输变电工程混凝土材料防腐和耐久性的研究。目前以第一作者发表文章30篇,申请专利10项,授权2项。thugeo@qq.com   
作者简介:  李奥森,2013年在纽卡斯尔大学(英国)获得硕士学位,主要从事输电线路、设计咨询、工程管理等研究。目前参与发表文章2篇,申请实用新型专利4项,参编书籍1项。
引用本文:    
李奥森, 丛贇, 张琰, 刘佳龙, 韩志伟. 钡离子对单硫型水化硫铝酸钙氯离子固化作用的影响[J]. 材料导报, 2023, 37(21): 22050307-6.
LI Aosen, CONG Yun, ZHANG Yan, LIU Jialong, HAN Zhiwei. Effect of Barium Ion on Chloride Binding of Monosulfoaluminate. Materials Reports, 2023, 37(21): 22050307-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050307  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22050307
1 Shi X M, Xie N, Fortune K, et al. Construction and Building Materials, 2012, 30, 125.
2 Thunqvist E L. Water Science and Technology, 2003, 48(9), 51.
3 Zhang L M, Li J, Qiao H X. Materials, 2019, 12(19), 3069.
4 Chen P, Li X, Zhang X S. Bulletin of the Chinese Ceramic Society, 2017, 36(5), 1790(in Chinese).
陈蓓, 李响, 张兴师. 硅酸盐通报, 2017, 36(5), 1790.
5 Yu M L, Deng A Z, Sun H, et al. New Building Materials, 2021, 48(10), 90(in Chinese).
余茂林, 邓安仲, 孙皓, 等. 新型建筑材料, 2021, 48(10), 90.
6 Li S P, Jin Z Q, Xiong C S. Bulletin of the Chinese Ceramic Society, 2021, 40(1), 25(in Chinese).
李树鹏, 金祖权, 熊传胜. 硅酸盐通报, 2021, 40(1), 25.
7 Wang S D, Huang Y B, Wang Z. Journal of the Chinese Ceramic Society, 2000, 28(6), 570(in Chinese).
王绍东, 黄煜镔, 王智. 硅酸盐学报, 2000, 28(6), 570.
8 Gou M F, Guan X M. Materials Reports, 2010, 24(11), 124(in Chinese).
勾密峰, 管学茂. 材料导报, 2010, 24(11), 124.
9 Rapin J P, Renaudin G, Elkaim E, et al. Cement and Concrete Research, 2002, 32(4), 513.
10 Mesbah, Francois M, Cau-dit-Coumes C, et al. Cement and Concrete Research, 2011, 41(5), 504.
11 Appelo C A J. Cement and Concrete Research, 2021, 140, 106270.
12 Luis B, Thomas M, Karen S, et al. Cement and Concrete Research, 2015, 73, 143.
13 Glasser F P, Kindness A, Stronach S A. Cement and Concrete Research, 1999, 29(6), 861.
14 Yoon S, Ha J, Chae S R, et al. Materials, 2016, 9, 401.
15 De Weerdt K, Colombo A, Coppola L, et al. Cement and Concrete Research, 2015, 68, 196.
16 Das J K, Pradhan B. Construction and Building Materials, 2019, 208, 175.
17 Song Z, Jiang L, Liu J, et al. Construction and Building Materials, 2015, 99, 150.
18 Zhu Q, Jiang L, Chen Y, et al. Construction and Building Materials, 2012, 37, 512.
19 Chen P, Ma B G, Tan H B, et al. Journal of Cleaner Production, 2021, 283, 124612.
20 Ma B G, Xia Y F, Tan H B, et al. Journal of University of Jinan (Science and Technology), 2012, 26(3), 221(in Chinese).
马保国, 夏永芳, 谭洪波, 等. 济南大学学报(自然科学版), 2012, 26(3), 221.
21 Qoku E, Bier T A, Westphal T. Journal of Building Engineering, 2017, 12, 37.
22 Dweck J, Da Cunha A L C, Pinto C A, et al. Journal of Thermal Analysis and Calorimetry, 2009, 97(1), 85.
23 Zhou X, Zhou M, Wu X, et al. Applied Geochemistry, 2017, 80, 49.
24 Wu X, Huang H, Liu H, et al. Cement and Concrete Research, 2021, 145, 106450.
25 Felmy A R, Dhanpat R, Amonette J E. Journal of Solution Chemistry, 2020, 19(2), 175.
26 Lothenbach B, Kulik D A, Matschei T, et al. Cement and Concrete Research, 2019, 115, 472.
[1] 朱军, 康敏, 李维亮, 王斌, 齐建云, 李姝, 刘丹阳. 粘土钒矿钡盐焙烧-酸浸提钒工艺研究[J]. 材料导报, 2020, 34(24): 24061-24067.
[2] 郭丽萍, 张健, 曹园章, 臧文洁. 超高性能水泥基材料复合盐侵蚀研究:合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性*[J]. CLDB, 2017, 31(23): 132-137.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed