Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 136-139    https://doi.org/10.11896/j.issn.1005-023X.2017.012.028
  计算模拟 |
聚酰亚胺玻璃化转变的动力学模拟*
杨明君, 邓彬彬, 马占
西南石油大学材料科学与工程学院, 成都 610500
A Molecular Dynamics Simulation of Polyimide Glass Transition
YANG Mingjun, DENG Binbin, MA Zhan
School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500
下载:  全 文 ( PDF ) ( 1397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚酰亚胺具有许多优异的性能,因此在工业中得到了广泛应用。目前对聚酰亚胺玻璃化转变的研究都局限于实验法,但由于实验条件的限制如高温、高压等,通过实验方法难以得到实验数据,影响人们对聚酰亚胺玻璃化转变的认识。利用Materials Studio v7.0对聚酰亚胺玻璃化转变进行模拟,计算出4种不同聚酰亚胺在不同温度下的密度,从而得到比体积与温度关系图,再根据Fox和Flory提出的自由体积理论得到聚酰亚胺的玻璃化转变温度。模拟计算出的玻璃化转变温度与实验值基本一致,表明可以通过动力学模拟研究聚酰亚胺玻璃化转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨明君
邓彬彬
马占
关键词:  聚酰亚胺  玻璃化转变温度  分子动力学模拟    
Abstract: Due to their excellent properties such as excellent thermal stability, environmental resistance, good mechanical strength and so forth, polyimides are used in a wide range of field. Polyimides have attracted much attention for the past few years. Glass transition temperature (Tg) directly influence the usage temperature of polyimides. Therefore the study of Tg is significant for production and utilization of polyimides. So far, experimental study is the most common method to measure the Tg of polyimide. However, there are many shortcomings including operation error and instrument error. In this work, the molecular dynamics simulation was employed to predict Tg for polyimides with different structure. At first, the amorphous cell model of polyimide was built up with AC module in Materials Studio, and then the simulation was performed in NPT ensemble at 425-650 K. Finally, the specific volume was sketched out as function of temperature, and the least-square method was used to obtain the Tg.
Key words:  polyimide    glass transition temperature    molecular dynamics simulation
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  O631.1+1  
基金资助: *西南石油大学引进人才项目(201331010015)
作者简介:  杨明君:男,1976年生,博士后,教授,主要从事生物材料分子动力学模拟研究 E-mail:779464426@qq.com
引用本文:    
杨明君, 邓彬彬, 马占. 聚酰亚胺玻璃化转变的动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 136-139.
YANG Mingjun, DENG Binbin, MA Zhan. A Molecular Dynamics Simulation of Polyimide Glass Transition. Materials Reports, 2017, 31(12): 136-139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.028  或          http://www.mater-rep.com/CN/Y2017/V31/I12/136
1 Li C F. Relation between structure and its thermal property of po-lyimides[J]. Chemical Propellants Polym Mater,2004,2(6):24(in Chinese).
李赤峰. 聚酰亚胺的结构与其热性能的关系[J].化学推进剂与高分子材料,2004,2(6):24.
2 Li S Z. Market statue and future of polyimides[J].New Chem Mater, 1999,27(11):12(in Chinese).
李生柱. 聚酰亚胺的现状和将来[J].化工新型材料,1999,27(11):12.
3 Wang X C, Gao S Q, Zhang Y L, et al. Advanced high temperature resistant polyimide composites[J]. Insulating Mater,2001,34(4):16(in Chinese).
王晓春, 高生强, 张一力, 等.耐高温聚酰亚胺复合材料[J]. 绝缘材料,2001,34(4):16.
4 Li L, Ma Y, Xie J, et al. Metallization process of a polyimide surface with palladium-free activation for electronic field applications[J]. J Electron Mater,2015,44(10):4042.
5 Spechler J A, Koh T W, Herb J T, et al. A transparent, smooth, thermally robust, conductive polyimide for flexible electronics[J]. Adv Funct Mater,2015,25(48):7428.
6 Li L, Ma Y, Gao G, et al. Pretreatment and deposition process of electroless Ni plating on polyimide film for electronic field applications[J].Colloids Surf A:Physicochem Eng Aspects,2015,477(1):42.
7 Fan L L, Dai P B, Lu Y Q. Preparation and properties of biphenyl polyimide resistive random access memory[J]. Insulating Mater,2016,49(3):29(in Chinese).
范丽丽, 戴培邦, 卢悦群. 一种联苯型聚酰亚胺阻变存储器的制备及性能[J]. 绝缘材料,2016, 49(3):29.
8 Zhou Y,Chen Y,Wang H, et al. Creation of a multilayer aluminum coating structure nanoparticle polyimide filler for electronic applications[J]. Mater Lett,2014,119(1):64.
9 Sápi A, Rémiás R, Kónya Z, et al. Characterization of electronic transitions in polyimide films based on spectral variations induced by hydrostatic pressures up to 400 MPa[J]. J Phys Chem B,2009,113(26):8835.
10 Sun M,Chang J,Tian G,et al. Preparation of high-performance po-lyimide fibers containing benzimidazole and benzoxazole units[J].J Mater Sci,2016,51(6):2830.
11 Hu J C. Characterization of polyimide ultra-fine non-woven fabric-films prepared by electro-spinning[J]. China Elastomerics,2009,19(1):35(in Chinese).
胡建聪. 高压静电纺丝法制备聚酰亚胺超细纤维无纺布膜[J].弹性体,2009,19(1):35.
12 Serbezeanu D, Popa A M, Stelzig T, et al. Preparation and characterization of thermally stable polyimide membranes by electrospinning for protective clothing applications[J]. Textile Res J,2015,85(17):1763.
13 Barzic A I, Stoica I, Popovici D, et al. An insight on the effect of rubbing textile fiber on morphology of some semi-alicyclic polyimides for liquid crystal orientation[J]. Polym Bull,2013,70(5):1553.
14 Gong Q, Zheng X, Gong S, et al. Synthesis of novel soluble rubbing-resistant polyimides used as liquid crystal vertical alignment la-yers[J]. Liquid Crystals,2015,43(1):1.
15 Wang S L, Zhang Q, Sun Z, et al. Preparation of soluble polyimide and its potential application in liquid crystal displays[J]. Acta Polym Sin,2009,52(6):566(in Chinese).
王守廉, 张芹, 孙振, 等. 可溶性聚酰亚胺的制备及其在液晶显示器上的潜在应用[J]. 高分子学报,2009,52(6):566.
16 Xia S, Yi L, Sun Z, et al. Synthesis and characterisation of rubbing-resistant polyimides with naphthalimide side-chain for liquid-crystal alignment layers[J]. Liquid Crystals, 2013,40(6):756.
17 Hwang S J, Chen T A, Lin K R, et al. Ultraviolet-light-treated polyimide alignment layers forpolarization-independentliquidcrystal Fresnel lenses[J].Appl Phys B,2012,107(1):151.
18 Li Z S ,Zhao Y J, Jia X N, et al. Development of molecular dyna-mics computer simulation[J]. Mechan Management Development,2008,23(2):174(in Chinese).
李卓谡,赵玉洁,贾晓娜,等.分子动力学计算机模拟技术进展[J].机械管理开发,2008,23(2):174.
19 金日光,化幼卿.高分子物理[M].北京:化学工业出版社,2006:135.
20 陈敏伯.计算化学:从理论化学到分子模拟[M].北京:科学出版社,2009:51.
21 Jawalkar S S,Adoor S G, Sairam M, et al.Molecular modeling on the binary blend compatibilityofpoly(vinylalcohol)andpoly(methylmethacrylate):An atomistic simulation and thermodynamic approach[J]. J Phys Chem B,2005,109(32):15611.
22 Wang Y H, Li P, Sun Q, et al. prediction the glass transition temperature of pet by molecular dynamics simulation[J]. J Qufu Normal University:Nat Sci,2014,40(1):74(in Chinese).
王玉花, 李平, 孙巧, 等. 聚对苯二甲酸乙二醇酯的玻璃化转变行为的分子动力学模拟[J]. 曲阜师范大学学报:自然科学版,2014,40(1):74.
23 Li G Z,Shen Y X,Zhan M S.Study on performance of thermal insulation of aromatic polyimide foams[J]. J Mater Eng,2009,37(7):43(in Chinese).
李光珠,沈燕侠,詹茂盛.芳香族聚酰亚胺泡沫的隔热性能研究[J]. 材料工程,2009,37(7):43.
[1] 陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
[2] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[3] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[4] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[5] 周雪艳, 马骉, 魏堃, 薄延震. 形状记忆氢化双酚A型环氧树脂的制备与性能[J]. 材料导报, 2018, 32(18): 3271-3275.
[6] 方 炜,王 磊. 碳纳米豆荚内C60分子的振荡行为[J]. 《材料导报》期刊社, 2018, 32(10): 1737-1742.
[7] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed