Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 23060069-7    https://doi.org/10.11896/cldb.23060069
  高分子与聚合物基复合材料 |
利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果
肖瑶, 邓华锋*, 李建林, 熊雨, 程雷
三峡库区地质灾害教育部重点实验室(三峡大学),湖北 宜昌 443002
Effect of Triton X-100 on Improving Urease Activity of Sporosarcina Pasteurii
XIAO Yao, DENG Huafeng*, LI Jianlin, XIONG Yu, CHENG Lei
Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 16178KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸盐沉积(MICP)技术是近年来发展起来的一种新型绿色加固技术,如何提升MICP技术的加固效能一直是学者关注的热点,本工作重点结合巴氏芽孢杆菌产脲酶原理和非离子表面活性剂的特点,设计采用非离子表面活性剂Triton X-100提升MICP效能的试验研究。结果表明:(1)在单因素试验结果的基础上,通过响应面试验分析确定了活性剂的最优处理条件,即掺量1.37%、处理时间5.02 h、处理温度34.28 ℃、菌胶比1∶2.11;(2)采用最优条件处理的巴氏芽孢杆菌对钙质砂进行加固后,钙质砂固化体碳酸钙含量和无侧限抗压强度分别提升了25.48%和22.83%;(3)非离子表面活性剂Triton X-100增大了巴氏芽孢杆菌的细胞膜通透性,一方面使得更多的胞内脲酶释放到细胞外,同时更多的尿素分子进入到细胞内,促进了尿素水解,提升了碳酸钙的生成速率;另一方面使得以细菌为核点生成的碳酸钙胶凝体的结构更为致密,在这两方面作用下,MICP效能得到有效提升。相关思路和研究结果可为MICP加固效果的提升提供新的参考和思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖瑶
邓华锋
李建林
熊雨
程雷
关键词:  微生物诱导碳酸盐沉积  脲酶  非离子表面活性剂  细胞膜通透性  响应面法    
Abstract: Microbially induced carbonate precipitation (MICP) technology is a new green reinforcement technology developed in recent years. How to improve the reinforcement efficiency of MICP has always been a focus of scholars’ attention. This work focuses on the principle of urease produced by Sporosarcina pasteurii and the characteristics of non-ionic surfactant. The experiment of improving MICP efficiency with non-ionic surfactant Triton X-100 was designed. The results showed that:(Ⅰ) based on the results of single factor experiment, response surface experiment was designed to analyze and determine the optimal treatment conditions of the surfactant, namely, the dosage was 1.37%, the treatment time was 5.02 h, the treatment temperature was 34.28 ℃, and the ratio of bacteria to cementation solution was 1∶2.11;(Ⅱ) the calcium carbonate content and unconfined compressive strength of the solidified body increased by 25.48% and 22.83% respectively after the calcareous sand was reinforced by Sporosarcina pasteurii under the optimal conditions;(Ⅲ) the non-ionic surfactant Triton X-100 increases the permeability of the cell membrane of Sporosarcina pasteurii. On the one hand, more intracellular urease is released to the outside of the cell, while more urea enters the cell, which promotes the hydrolysis of urea and the formation rate of carbonate. On the other hand, the calcium carbonate gel structure generates with bacteria as the core more compact. Under the effect of these two aspects, the MICP efficiency is effectively improved. Relevant ideas and research results can provide new reference and ideas for the improvement of MICP reinforcement effect.
Key words:  microbially induced carbonate precipitation (MICP)    urease    non-ionic surfactant    cell membrane permeability    response surface method
发布日期:  2024-01-16
ZTFLH:  TU521  
基金资助: 国家自然科学基金(U22A20600;U2034203)
通讯作者:  邓华锋,三峡大学土木与建筑学院教授、博士研究生导师。2002年武汉水利电力大学(宜昌)建筑工程专业本科毕业,2005年三峡大学土木水电专业硕士毕业后到三峡大学工作至今,2010年武汉大学水利电力专业博士毕业。目前主要从事水电工程边坡变形与稳定分析、库岸边坡水岩相互作用机理及卸荷岩体力学试验与理论等方面的研究工作。授权专利150余项,发表论文200余篇,包括《岩土力学》《岩石力学与工程学报》、Bulletin of Engineering Geology and the Environment、Scientific Reports等。dhf8010@ctgu.edu.cn   
作者简介:  肖瑶,2015年6月、2018年6月于三峡大学分别获得工学学士学位和硕士学位。现为三峡大学土木与建筑学院博士研究生,在邓华锋教授、李建林教授的指导下进行研究。目前主要研究领域为环境岩土工程。
引用本文:    
肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
XIAO Yao, DENG Huafeng, LI Jianlin, XIONG Yu, CHENG Lei. Effect of Triton X-100 on Improving Urease Activity of Sporosarcina Pasteurii. Materials Reports, 2024, 38(1): 23060069-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23060069  或          https://www.mater-rep.com/CN/Y2024/V38/I1/23060069
1 DeJong J T, Mortensen B M, Martinez B C, et al. Ecological Enginee-ring, 2008, 36(2), 197.
2 Kantzas A, Stehmeier L, Marentette D F, et al. In:Proceedings of Annual Technical Meeting. Canada, 1992, pp. 46.
3 Yang Y, Chu J, Xiao Y, et al. Construction and Building Materials, 2019, 212, 342.
4 Li H, Tang C S, Liu B, et al. Chinese Journal of Geotechnical Enginee-ring, 2020, 42(10), 1931 (in Chinese).
李昊, 唐朝生, 刘博, 等. 岩土工程学报, 2020, 42(10), 1931.
5 Li C, Wang S, Wang Y X, et al. Rock and Soil Mechanics, 2019, 40(4), 1291 (in Chinese).
李驰, 王硕, 王燕星, 等. 岩土力学, 2019, 40(4), 1291.
6 Qian C X, Zheng T W, Zhang X, et al. Construction and Building Materials, 2021, 290, 123226.
7 Chen R F, Miao L C, Sun X H, et al. Rock and Soil Mechanics, 2020, 41(3), 933 (in Chinese).
陈润发, 缪林昌, 孙潇昊, 等. 岩土力学, 2020, 41(3), 933.
8 Li M, Cheng X H, Guo H X. International Biodeterioration & Biodegradation, 2013, 76, 81.
9 Liu S Y, Yu J, Zeng W L, et al. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1), 191 (in Chinese).
刘士雨, 俞缙, 曾伟龙, 等. 岩石力学与工程学报, 2020, 39(1), 191.
10 Bu C M, Lu X Y, Zhu D X, et al. Arabian Journal of Geosciences, 2022, 15(9), 863.
11 Yang Y, Ruan S Q, Wu S F, et al. Acta Geotechnica, 2021, 16(4), 1113.
12 Zhao Y, Fan C B, Liu P H, et al. Environmental Earth Sciences, 2018, 77(17), 615.
13 Zhang J K, Su P D, Wen K J, et al. KSCE Journal of Civil Engineering, 2020, 24(11), 3189.
14 Zhao Y, Xiao Z Y, Fan C B, et al. Bulletin of Engineering Geology and the Environment, 2020, 79(6), 3075.
15 Nafise H B, Davood M, Mohamadreza E. Construction and Building Materials, 2017, 141, 565.
16 Mo F. Optimizing the composition of phospholipids and the absence of Dalanylacylation of lipoteichoic acid to promote the high yield of heterologous protein of Bacillus licheniformis. Master’s Thesis, Hubei University, China, 2020 (in Chinese).
莫非. 磷脂组分优化及脂磷壁酸D-丙氨酰化缺失促地衣芽胞杆菌异源蛋白高产. 硕士学位论文, 湖北大学, 2020.
17 Shi G Y. Experimental study on the solidification effect of calcium carbonate deposited by urease in soil. Master’s Thesis, Inner Mongolia University of Technology, China, 2020 (in Chinese).
史冠宇. 脲酶沉积碳酸钙在土中发挥固化效用的试验研究. 硕士学位论文, 内蒙古工业大学, 2020.
18 Zou W Y, Yang X Z, Song H, et al. Detergent & Cosmetics, 2016, 39(7), 55 (in Chinese).
邹文苑, 杨许召, 宋浩, 等. 日用化学品科学, 2016, 39(7), 55.
19 Ding Y, Yuan X Z, Zeng G M, et al. Environmental Science, 2010, 31(4), 1047 (in Chinese).
丁莹, 袁兴中, 曾光明, 等. 环境科学, 2010, 31(4), 1047.
20 Seockheon L, Kweon J H, Kim H S. International Biodeterioration & Biodegradation, 2013, 85, 652.
21 Koichi T, Miura A, Koike H, et al. Journal of Biotechnology, 2017, 248, 9.
22 Liu J L, Li Z M, Zhao G Q, et al. Anhui Chemical Industry, 2019, 5(2), 30 (in Chinese).
刘金龙, 李志敏, 赵国群, 等. 安徽化工, 2019, 5(2), 30.
23 Xiao Y, Deng H F, Li J L, et al. Rock and Soil Mechanics, 2022, 43(2), 395 (in Chinese).
肖瑶, 邓华锋, 李建林, 等. 岩土力学, 2022, 43(2), 395.
24 Sun R R, Huang P X, Li W G, et al. Applied Chemical Industry, 2013, 42(1), 26 (in Chinese).
孙儒瑞, 黄品鲜, 李伟光, 等. 应用化工, 2013, 42(1), 26.
25 Peng J, Feng Q P, Sun Y C. Chinese Journal of Geotechnical Enginee-ring, 2018, 40(6), 1048 (in Chinese).
彭劼, 冯清鹏, 孙益成. 岩土工程学报, 2018, 40(6), 1048.
26 Kalil S J, Maugeri F, Rodrigues M I. Process Biochemistry, 2000, 35(6), 539.
27 Sanjeevia R, Kumarb G A, Krishnanb B R. Materials Today: Procee-dings, 2020, 8(1), 109.
28 Luo Y H, Guo P, Gao J F, et al. Journal of Cleaner Production, 2022, 379, 134427.
29 Iztok P, Goran Š, Mirjana R, et al. Energies, 2020, 13(14), 3691.
30 Whiffin V S. Microbial CaCO3 precipitation for the production of biocement. Ph. D. Thesis, Murdoch University, Australia, 2004.
31 Ou Q, Li Y F, Yang Y, et al. Geofluids, 2022, 2022, 1.
32 Ai L Y, Weng C H, Ruan L Y, et al. Mycosystema, 2017, 36(3), 339 (in Chinese).
艾柳英, 翁彩红, 阮玲云, 等. 菌物学报, 2017, 36(3), 339.
33 He Y G, Zhou S, Hu X Y, et al. Journal of South China Agricultural University, 2017, 38(6), 72 (in Chinese).
贺玉广, 周思, 胡晓云, 等. 华南农业大学学报, 2017, 38(6), 72.
[1] 杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
[2] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[3] 赵新元, 杨科, 何祥, 魏祯, 于祥, 张继强. 基于RSM-BBD的多源煤基固废胶结体配比及性能研究[J]. 材料导报, 2024, 38(9): 22090099-7.
[4] 秦怡歆, 曾凯, 邢保英, 张洪申, 何晓聪. 颗粒增强粘接层结构参数对连接强度的影响及工艺优化[J]. 材料导报, 2024, 38(6): 22060206-5.
[5] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[6] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[7] 郭志永, 李猛, 张志强, 路学成, 张天刚, 曹轶然. 基于响应面法的镍基高温合金GH4169电弧增材工艺优化[J]. 材料导报, 2024, 38(19): 23060136-7.
[8] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[9] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[10] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[11] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[12] 田威, 李腾, 贾能, 贺礼, 张雪珂, 张旭东. 木钙源EICP溶液固化路基黄土性能研究[J]. 材料导报, 2022, 36(15): 21050040-8.
[13] 刘哲, 刘勇, 高广志, 李奇贵, 包阳阳, 马凤森. Plackett-Burman设计结合响应面法优化可溶性微针的制备工艺[J]. 材料导报, 2021, 35(z2): 593-599.
[14] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[15] 丁亚茹, 陈芙蓉, 杨帆, 贾翠玲. 响应面法分析7075铝合金激光焊接参数对焊接质量的影响规律[J]. 材料导报, 2021, 35(2): 2103-2108.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed