Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050283-7    https://doi.org/10.11896/cldb.22050283
  无机非金属及其复合材料 |
高岭石表面水化机理及电场弱化其吸附性能的分子模拟
李天宇, 柴肇云*, 杨泽前, 辛子朋, 孙浩程, 闫珂
太原理工大学原位改性采矿教育部重点实验室,太原 030024
Molecular Simulation of Surface Hydration Mechanism and Electric Field Weakening Adsorption Properties of Kaolinite
LI Tianyu, CHAI Zhaoyun*, YANG Zeqian, XIN Zipeng, SUN Haocheng, YAN Ke
Key Laboratory of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 14944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高岭石是泥岩黏土矿物组成中的主要成分之一,其水理特性对分析高岭石类黏土矿物遇水工程性质劣化的研究至关重要,通过密度泛函理论和分子动力学模拟研究了高岭石表面水化机理及电化学作用对高岭石表面吸附性能的影响。结果表明:水分子在高岭石(001)晶面吸附时水中的Hw、Ow原子与高岭石表面羟基的Hs、Os原子间形成了Hw-Os及Hs-Ow两种类型的氢键,并且Hw-Os氢键作用较强;水分子与高岭石(001)晶面之间形成的氢键作用导致高岭石(001)晶面具有较强的亲水性质;外加电场对体系中水分子的平衡构象及吸附形态产生显著影响,当体系无电场时,水分子通过氢键与高岭石(001)晶面结合紧密,随着电场强度不断增加,水分子逐渐从高岭石表面脱附,以氢原子朝上、氧原子朝下的“V”字型结构向体相中扩散,水分子的偶极矩沿电场方向排列;随着水-高岭石体系中电场强度的增加,吸附体系中的氢键作用逐渐被破坏,水分子脱附能力增强,高岭石表面对水分子的吸附性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天宇
柴肇云
杨泽前
辛子朋
孙浩程
闫珂
关键词:  高岭石  密度泛函理论  表面水化  分子动力学  电场  扩散    
Abstract: Kaolinite is one of the main components in the composition of mudstone clay minerals and its hydrophysical characteristics are essential for the analysis of the deterioration of engineering properties of kaolinite-like clay minerals in contact with water. The surface hydration mechanism of kaolinite and the influence of electrochemical effects on the adsorption properties of kaolinite surface were investigated by density functional theory and molecular dynamics simulation. The results show that during the adsorption of water molecule on the surface of kaolinite(001), two types of hydrogen bonds, Hw-Os and Hs-Ow, are formed between the Hw and Ow atoms in water and the Hs and Os atoms of the hydroxyl groups on the surface of kaolinite, and the Hw-Os hydrogen bonding is stronger. The hydrogen bonding between water molecule and kaolinite(001) surface results in strong hydrophilicity of the kaolinite(001) surface. The applied electric field has a significant effect on the equilibrium conformation and adsorption pattern of water molecules in the system, when there is no electric field in the system, water molecules are tightly bonded to the kaolinite (001) surface through hydrogen bonding, and with the increasing strength of the electric field, water molecules are gradually disassociated from the kaolinite surface to diffuse into the bulk phase in a ‘V’ structure with hydrogen atoms facing up and oxygen atoms facing down, and the dipole moments of water molecules are arranged along the electric field direction. With the increase of electric field strength in the water-kaolinite system, the hydrogen bonding in the adsorption system is gradually destroyed, the desorption ability of water molecules is enhanced, and the adsorption of water molecules on the kaolinite surface is reduced.
Key words:  kaolinite    density functional theory    surface hydration    molecular dynamics    electric field    diffusion
发布日期:  2024-01-16
ZTFLH:  P574  
基金资助: 国家自然科学基金(52274091;51974193)
通讯作者:  柴肇云,教授、博士研究生导师。2002年于黑龙江科技大学采矿工程专业获工学学士学位,2005年于太原理工大学采矿工程专业获工学硕士学位,2008年于太原理工大学采矿工程专业获工学博士学位。主要从事软岩物性与改性、软岩及其工程稳定性控制方面的科研与教学工作。主持国家自然科学基金项目4项,省部级项目10余项,授权发明专利10余项。在Applied Clay Science、Geomechanics and Engineering,An International Journal、《岩石力学与工程学报》《煤炭学报》《岩土工程学报》等国内外期刊上发表学术论文60余篇,出版专著2部。chaizhaoyun_2002@163.com   
作者简介:  李天宇,2020年7月于太原理工大学获得工学学士学位。现为太原理工大学矿业工程学院硕士研究生,在柴肇云教授的指导下进行研究。目前主要研究领域为软岩物性与改性。
引用本文:    
李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
LI Tianyu, CHAI Zhaoyun, YANG Zeqian, XIN Zipeng, SUN Haocheng, YAN Ke. Molecular Simulation of Surface Hydration Mechanism and Electric Field Weakening Adsorption Properties of Kaolinite. Materials Reports, 2024, 38(1): 22050283-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050283  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22050283
1 Jiang J D, Chen S S, Xu J, et al.Journal of China Coal Society, 2018, 43(8), 2217 (in Chinese).
蒋景东, 陈生水, 徐婕, 等. 煤炭学报, 2018, 43(8), 2217.
2 López-Lilao A, Gómez-Tena M P, Mallol G, et al. Applied Clay Science, 2017, 144, 157.
3 Kuligiewicz A, Derkowski A, Szczerba M, et al. Clays and Clay Minerals, 2015, 63, 15.
4 Cheng K, Heidari Z. Applied Clay Science, 2017, 143, 362.
5 Takahashi Y, Kawamura K, Sato T, et al. Journal of Nuclear Science and Technology, 2015, 52, 1470.
6 Kirkpatrick R J, Kalinichev A G, Bowers G M, et al. American Minera-logist, 2015, 100, 1341.
7 Xiang J H, Zeng F G, Liang H Z, et al. Science China: Earth Sciences, 2014, 44(7), 1418 (in Chinese).
相建华, 曾凡桂, 梁虎珍, 等. 中国科学:地球科学, 2014, 44(7), 1418.
8 Chen Z R, Qiu H X, Wang G H. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 247 (in Chinese).
陈浙锐, 邱鸿鑫, 王光辉. 硅酸盐通报, 2020, 39(1), 247.
9 Peng C, Min F, Liu L, et al. Applied Surface Science, 2016, 387, 308.
10 Song F, Ma L, Fan J, et al. Physical Chemistry Chemical Physics, 2018, 20, 11987.
11 Liao B, Qiu L, Wang D, et al. RSC Advances, 2019, 9, 21793.
12 Li M M, Xu S, Lu J W, et al. Multipurpose Utilization of Mineral Resources, 2017, 37(1), 125 (in Chinese).
李明明, 徐硕, 卢冀伟, 等. 矿产综合利用, 2017, 37(1), 125.
13 Miranda-Trevino J C, Coles C A. Applied Clay Science, 2003, 23, 133.
14 Benazzouz B K, Zaoui A, Belonoshko A B. American Mineralogist, 2013, 98, 1881.
15 Šolc R, Gerzabek M H, Lischka H, et al. Geoderma, 2011, 169, 47.
16 Chai Z Y, Zhang H Y, Yang P, et al. Journal of China Coal Society, 2021, 46(8), 2557 (in Chinese).
柴肇云, 张海洋, 杨攀, 等. 煤炭学报, 2021, 46(8), 2557.
17 Ireta J, Neugebauer J, Scheffler M. The Journal of Physical Chemistry A, 2004, 108, 5692.
18 Grossman J C, Schwegler E, Draeger E W, et al. The Journal of Physical Chemistry, 2004, 120, 300.
19 Tunega D, Bučko T, Zaoui A. The Journal of Chemical Physics, 2012, 137, 114105.
20 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188.
21 Warne M R, Allan N L, Cosgrove T. Physical Chemistry Chemical Phy-sics, 2000, 2, 3663.
22 Suitch P R, Young R A. Clays and Clay Minerals, 1983, 31, 357.
23 Bish D L, Von Dreele R B. Clays and Clay Minerals, 1989, 37, 289.
24 Bish D L, Johnston C T. Clays and Clay Minerals, 1993, 41, 297.
25 Eisenberg D, Kauzmann W. The structure and properties of water, Cla-deron Press, Oxford, U.K, 2006.
26 Cygan R T, Liang J, Kalinichev A G. The Journal of Physical Chemistry B, 2004, 108, 1255.
27 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Interaction models for water in relation to protein hydration, Intermolecular Forces, Springer, 1981, pp. 331.
28 Han Y H. Quantum chemistry study on the surface properties and dispersion mechanism of kaolinite and montmorillonite. Ph. D. Thesis. China University of Mining and Technology(Beijing), China, 2017 (in Chinese).
韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究. 博士学位论文, 中国矿业大学(北京), 2017.
29 Chen J, Min F F, Liu L Y, et al. Applied Surface Science, 2019, 476, 6.
30 Chen J, Min F F, Liu L Y, et al. Journal of China Coal Society, 2016, 41(12), 3115 (in Chinese).
陈军, 闵凡飞, 刘令云, 等. 煤炭学报, 2016, 41(12), 3115.
31 Becke A D, Edgecombe K E. The Journal of Chemical Physics, 1990, 92, 5397.
32 Yang Z Q, Chai Z Y, Zhang H Y, et al. Journal of China Coal Society, 2021, 46(S1), 222 (in Chinese).
杨泽前, 柴肇云, 张海洋, 等. 煤炭学报, 2021, 46(S1), 222.
33 Min F F, Chen J, Peng C L. Journal of China Coal Society, 2018, 43(1), 242 (in Chinese).
闵凡飞, 陈军, 彭陈亮. 煤炭学报, 2018, 43(1), 242.
34 Steiner T, Desiraju G R. Chemical Communications, 1998, 8, 891.
[1] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[2] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[3] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[4] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[5] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[6] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[7] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[8] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[9] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[10] 仵金玲, 刘思雨, 张彪, 魏智磊, 史忠旗. 连接温度对W/Ni/Kovar真空扩散连接接头界面结构及结合强度的影响[J]. 材料导报, 2024, 38(4): 22090302-6.
[11] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[12] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[13] 李亚莎, 郭玉杰, 夏宇, 王佳敏, 晏欣悦, 陈俊璋. 外电场下三元乙丙橡胶微观特性及其对沿面放电影响的研究[J]. 材料导报, 2024, 38(23): 23070060-8.
[14] 蔡轩皓, 娄兴, 覃继宁, 周涵. 电致变色材料微纳结构设计及多波段调控应用研究进展[J]. 材料导报, 2024, 38(21): 23100087-7.
[15] 左彤, 唐显, 李鑫, 何虎, 牛厂磊, 隋解和, 郭逢凯. 方钴矿热电器件性能衰减影响因素研究[J]. 材料导报, 2024, 38(21): 23050211-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed