Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22050283-7    https://doi.org/10.11896/cldb.22050283
  无机非金属及其复合材料 |
高岭石表面水化机理及电场弱化其吸附性能的分子模拟
李天宇, 柴肇云*, 杨泽前, 辛子朋, 孙浩程, 闫珂
太原理工大学原位改性采矿教育部重点实验室,太原 030024
Molecular Simulation of Surface Hydration Mechanism and Electric Field Weakening Adsorption Properties of Kaolinite
LI Tianyu, CHAI Zhaoyun*, YANG Zeqian, XIN Zipeng, SUN Haocheng, YAN Ke
Key Laboratory of In-Situ Property-Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 14944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高岭石是泥岩黏土矿物组成中的主要成分之一,其水理特性对分析高岭石类黏土矿物遇水工程性质劣化的研究至关重要,通过密度泛函理论和分子动力学模拟研究了高岭石表面水化机理及电化学作用对高岭石表面吸附性能的影响。结果表明:水分子在高岭石(001)晶面吸附时水中的Hw、Ow原子与高岭石表面羟基的Hs、Os原子间形成了Hw-Os及Hs-Ow两种类型的氢键,并且Hw-Os氢键作用较强;水分子与高岭石(001)晶面之间形成的氢键作用导致高岭石(001)晶面具有较强的亲水性质;外加电场对体系中水分子的平衡构象及吸附形态产生显著影响,当体系无电场时,水分子通过氢键与高岭石(001)晶面结合紧密,随着电场强度不断增加,水分子逐渐从高岭石表面脱附,以氢原子朝上、氧原子朝下的“V”字型结构向体相中扩散,水分子的偶极矩沿电场方向排列;随着水-高岭石体系中电场强度的增加,吸附体系中的氢键作用逐渐被破坏,水分子脱附能力增强,高岭石表面对水分子的吸附性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天宇
柴肇云
杨泽前
辛子朋
孙浩程
闫珂
关键词:  高岭石  密度泛函理论  表面水化  分子动力学  电场  扩散    
Abstract: Kaolinite is one of the main components in the composition of mudstone clay minerals and its hydrophysical characteristics are essential for the analysis of the deterioration of engineering properties of kaolinite-like clay minerals in contact with water. The surface hydration mechanism of kaolinite and the influence of electrochemical effects on the adsorption properties of kaolinite surface were investigated by density functional theory and molecular dynamics simulation. The results show that during the adsorption of water molecule on the surface of kaolinite(001), two types of hydrogen bonds, Hw-Os and Hs-Ow, are formed between the Hw and Ow atoms in water and the Hs and Os atoms of the hydroxyl groups on the surface of kaolinite, and the Hw-Os hydrogen bonding is stronger. The hydrogen bonding between water molecule and kaolinite(001) surface results in strong hydrophilicity of the kaolinite(001) surface. The applied electric field has a significant effect on the equilibrium conformation and adsorption pattern of water molecules in the system, when there is no electric field in the system, water molecules are tightly bonded to the kaolinite (001) surface through hydrogen bonding, and with the increasing strength of the electric field, water molecules are gradually disassociated from the kaolinite surface to diffuse into the bulk phase in a ‘V’ structure with hydrogen atoms facing up and oxygen atoms facing down, and the dipole moments of water molecules are arranged along the electric field direction. With the increase of electric field strength in the water-kaolinite system, the hydrogen bonding in the adsorption system is gradually destroyed, the desorption ability of water molecules is enhanced, and the adsorption of water molecules on the kaolinite surface is reduced.
Key words:  kaolinite    density functional theory    surface hydration    molecular dynamics    electric field    diffusion
发布日期:  2024-01-16
ZTFLH:  P574  
基金资助: 国家自然科学基金(52274091;51974193)
通讯作者:  柴肇云,教授、博士研究生导师。2002年于黑龙江科技大学采矿工程专业获工学学士学位,2005年于太原理工大学采矿工程专业获工学硕士学位,2008年于太原理工大学采矿工程专业获工学博士学位。主要从事软岩物性与改性、软岩及其工程稳定性控制方面的科研与教学工作。主持国家自然科学基金项目4项,省部级项目10余项,授权发明专利10余项。在Applied Clay Science、Geomechanics and Engineering,An International Journal、《岩石力学与工程学报》《煤炭学报》《岩土工程学报》等国内外期刊上发表学术论文60余篇,出版专著2部。chaizhaoyun_2002@163.com   
作者简介:  李天宇,2020年7月于太原理工大学获得工学学士学位。现为太原理工大学矿业工程学院硕士研究生,在柴肇云教授的指导下进行研究。目前主要研究领域为软岩物性与改性。
引用本文:    
李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
LI Tianyu, CHAI Zhaoyun, YANG Zeqian, XIN Zipeng, SUN Haocheng, YAN Ke. Molecular Simulation of Surface Hydration Mechanism and Electric Field Weakening Adsorption Properties of Kaolinite. Materials Reports, 2024, 38(1): 22050283-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050283  或          http://www.mater-rep.com/CN/Y2024/V38/I1/22050283
1 Jiang J D, Chen S S, Xu J, et al.Journal of China Coal Society, 2018, 43(8), 2217 (in Chinese).
蒋景东, 陈生水, 徐婕, 等. 煤炭学报, 2018, 43(8), 2217.
2 López-Lilao A, Gómez-Tena M P, Mallol G, et al. Applied Clay Science, 2017, 144, 157.
3 Kuligiewicz A, Derkowski A, Szczerba M, et al. Clays and Clay Minerals, 2015, 63, 15.
4 Cheng K, Heidari Z. Applied Clay Science, 2017, 143, 362.
5 Takahashi Y, Kawamura K, Sato T, et al. Journal of Nuclear Science and Technology, 2015, 52, 1470.
6 Kirkpatrick R J, Kalinichev A G, Bowers G M, et al. American Minera-logist, 2015, 100, 1341.
7 Xiang J H, Zeng F G, Liang H Z, et al. Science China: Earth Sciences, 2014, 44(7), 1418 (in Chinese).
相建华, 曾凡桂, 梁虎珍, 等. 中国科学:地球科学, 2014, 44(7), 1418.
8 Chen Z R, Qiu H X, Wang G H. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 247 (in Chinese).
陈浙锐, 邱鸿鑫, 王光辉. 硅酸盐通报, 2020, 39(1), 247.
9 Peng C, Min F, Liu L, et al. Applied Surface Science, 2016, 387, 308.
10 Song F, Ma L, Fan J, et al. Physical Chemistry Chemical Physics, 2018, 20, 11987.
11 Liao B, Qiu L, Wang D, et al. RSC Advances, 2019, 9, 21793.
12 Li M M, Xu S, Lu J W, et al. Multipurpose Utilization of Mineral Resources, 2017, 37(1), 125 (in Chinese).
李明明, 徐硕, 卢冀伟, 等. 矿产综合利用, 2017, 37(1), 125.
13 Miranda-Trevino J C, Coles C A. Applied Clay Science, 2003, 23, 133.
14 Benazzouz B K, Zaoui A, Belonoshko A B. American Mineralogist, 2013, 98, 1881.
15 Šolc R, Gerzabek M H, Lischka H, et al. Geoderma, 2011, 169, 47.
16 Chai Z Y, Zhang H Y, Yang P, et al. Journal of China Coal Society, 2021, 46(8), 2557 (in Chinese).
柴肇云, 张海洋, 杨攀, 等. 煤炭学报, 2021, 46(8), 2557.
17 Ireta J, Neugebauer J, Scheffler M. The Journal of Physical Chemistry A, 2004, 108, 5692.
18 Grossman J C, Schwegler E, Draeger E W, et al. The Journal of Physical Chemistry, 2004, 120, 300.
19 Tunega D, Bučko T, Zaoui A. The Journal of Chemical Physics, 2012, 137, 114105.
20 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188.
21 Warne M R, Allan N L, Cosgrove T. Physical Chemistry Chemical Phy-sics, 2000, 2, 3663.
22 Suitch P R, Young R A. Clays and Clay Minerals, 1983, 31, 357.
23 Bish D L, Von Dreele R B. Clays and Clay Minerals, 1989, 37, 289.
24 Bish D L, Johnston C T. Clays and Clay Minerals, 1993, 41, 297.
25 Eisenberg D, Kauzmann W. The structure and properties of water, Cla-deron Press, Oxford, U.K, 2006.
26 Cygan R T, Liang J, Kalinichev A G. The Journal of Physical Chemistry B, 2004, 108, 1255.
27 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Interaction models for water in relation to protein hydration, Intermolecular Forces, Springer, 1981, pp. 331.
28 Han Y H. Quantum chemistry study on the surface properties and dispersion mechanism of kaolinite and montmorillonite. Ph. D. Thesis. China University of Mining and Technology(Beijing), China, 2017 (in Chinese).
韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究. 博士学位论文, 中国矿业大学(北京), 2017.
29 Chen J, Min F F, Liu L Y, et al. Applied Surface Science, 2019, 476, 6.
30 Chen J, Min F F, Liu L Y, et al. Journal of China Coal Society, 2016, 41(12), 3115 (in Chinese).
陈军, 闵凡飞, 刘令云, 等. 煤炭学报, 2016, 41(12), 3115.
31 Becke A D, Edgecombe K E. The Journal of Chemical Physics, 1990, 92, 5397.
32 Yang Z Q, Chai Z Y, Zhang H Y, et al. Journal of China Coal Society, 2021, 46(S1), 222 (in Chinese).
杨泽前, 柴肇云, 张海洋, 等. 煤炭学报, 2021, 46(S1), 222.
33 Min F F, Chen J, Peng C L. Journal of China Coal Society, 2018, 43(1), 242 (in Chinese).
闵凡飞, 陈军, 彭陈亮. 煤炭学报, 2018, 43(1), 242.
34 Steiner T, Desiraju G R. Chemical Communications, 1998, 8, 891.
[1] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[2] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[3] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[4] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[5] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[6] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[7] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[8] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[9] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[10] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[11] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[12] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[13] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[14] 李锺奥, 陆春华, 成亮, Emmanuel. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 21070218-6.
[15] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed