Abstract: Kaolinite is one of the main components in the composition of mudstone clay minerals and its hydrophysical characteristics are essential for the analysis of the deterioration of engineering properties of kaolinite-like clay minerals in contact with water. The surface hydration mechanism of kaolinite and the influence of electrochemical effects on the adsorption properties of kaolinite surface were investigated by density functional theory and molecular dynamics simulation. The results show that during the adsorption of water molecule on the surface of kaolinite(001), two types of hydrogen bonds, Hw-Os and Hs-Ow, are formed between the Hw and Ow atoms in water and the Hs and Os atoms of the hydroxyl groups on the surface of kaolinite, and the Hw-Os hydrogen bonding is stronger. The hydrogen bonding between water molecule and kaolinite(001) surface results in strong hydrophilicity of the kaolinite(001) surface. The applied electric field has a significant effect on the equilibrium conformation and adsorption pattern of water molecules in the system, when there is no electric field in the system, water molecules are tightly bonded to the kaolinite (001) surface through hydrogen bonding, and with the increasing strength of the electric field, water molecules are gradually disassociated from the kaolinite surface to diffuse into the bulk phase in a ‘V’ structure with hydrogen atoms facing up and oxygen atoms facing down, and the dipole moments of water molecules are arranged along the electric field direction. With the increase of electric field strength in the water-kaolinite system, the hydrogen bonding in the adsorption system is gradually destroyed, the desorption ability of water molecules is enhanced, and the adsorption of water molecules on the kaolinite surface is reduced.
通讯作者:
柴肇云,教授、博士研究生导师。2002年于黑龙江科技大学采矿工程专业获工学学士学位,2005年于太原理工大学采矿工程专业获工学硕士学位,2008年于太原理工大学采矿工程专业获工学博士学位。主要从事软岩物性与改性、软岩及其工程稳定性控制方面的科研与教学工作。主持国家自然科学基金项目4项,省部级项目10余项,授权发明专利10余项。在Applied Clay Science、Geomechanics and Engineering,An International Journal、《岩石力学与工程学报》《煤炭学报》《岩土工程学报》等国内外期刊上发表学术论文60余篇,出版专著2部。chaizhaoyun_2002@163.com
李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
LI Tianyu, CHAI Zhaoyun, YANG Zeqian, XIN Zipeng, SUN Haocheng, YAN Ke. Molecular Simulation of Surface Hydration Mechanism and Electric Field Weakening Adsorption Properties of Kaolinite. Materials Reports, 2024, 38(1): 22050283-7.
1 Jiang J D, Chen S S, Xu J, et al.Journal of China Coal Society, 2018, 43(8), 2217 (in Chinese). 蒋景东, 陈生水, 徐婕, 等. 煤炭学报, 2018, 43(8), 2217. 2 López-Lilao A, Gómez-Tena M P, Mallol G, et al. Applied Clay Science, 2017, 144, 157. 3 Kuligiewicz A, Derkowski A, Szczerba M, et al. Clays and Clay Minerals, 2015, 63, 15. 4 Cheng K, Heidari Z. Applied Clay Science, 2017, 143, 362. 5 Takahashi Y, Kawamura K, Sato T, et al. Journal of Nuclear Science and Technology, 2015, 52, 1470. 6 Kirkpatrick R J, Kalinichev A G, Bowers G M, et al. American Minera-logist, 2015, 100, 1341. 7 Xiang J H, Zeng F G, Liang H Z, et al. Science China: Earth Sciences, 2014, 44(7), 1418 (in Chinese). 相建华, 曾凡桂, 梁虎珍, 等. 中国科学:地球科学, 2014, 44(7), 1418. 8 Chen Z R, Qiu H X, Wang G H. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 247 (in Chinese). 陈浙锐, 邱鸿鑫, 王光辉. 硅酸盐通报, 2020, 39(1), 247. 9 Peng C, Min F, Liu L, et al. Applied Surface Science, 2016, 387, 308. 10 Song F, Ma L, Fan J, et al. Physical Chemistry Chemical Physics, 2018, 20, 11987. 11 Liao B, Qiu L, Wang D, et al. RSC Advances, 2019, 9, 21793. 12 Li M M, Xu S, Lu J W, et al. Multipurpose Utilization of Mineral Resources, 2017, 37(1), 125 (in Chinese). 李明明, 徐硕, 卢冀伟, 等. 矿产综合利用, 2017, 37(1), 125. 13 Miranda-Trevino J C, Coles C A. Applied Clay Science, 2003, 23, 133. 14 Benazzouz B K, Zaoui A, Belonoshko A B. American Mineralogist, 2013, 98, 1881. 15 Šolc R, Gerzabek M H, Lischka H, et al. Geoderma, 2011, 169, 47. 16 Chai Z Y, Zhang H Y, Yang P, et al. Journal of China Coal Society, 2021, 46(8), 2557 (in Chinese). 柴肇云, 张海洋, 杨攀, 等. 煤炭学报, 2021, 46(8), 2557. 17 Ireta J, Neugebauer J, Scheffler M. The Journal of Physical Chemistry A, 2004, 108, 5692. 18 Grossman J C, Schwegler E, Draeger E W, et al. The Journal of Physical Chemistry, 2004, 120, 300. 19 Tunega D, Bučko T, Zaoui A. The Journal of Chemical Physics, 2012, 137, 114105. 20 Monkhorst H J, Pack J D. Physical Review B, 1976, 13, 5188. 21 Warne M R, Allan N L, Cosgrove T. Physical Chemistry Chemical Phy-sics, 2000, 2, 3663. 22 Suitch P R, Young R A. Clays and Clay Minerals, 1983, 31, 357. 23 Bish D L, Von Dreele R B. Clays and Clay Minerals, 1989, 37, 289. 24 Bish D L, Johnston C T. Clays and Clay Minerals, 1993, 41, 297. 25 Eisenberg D, Kauzmann W. The structure and properties of water, Cla-deron Press, Oxford, U.K, 2006. 26 Cygan R T, Liang J, Kalinichev A G. The Journal of Physical Chemistry B, 2004, 108, 1255. 27 Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Interaction models for water in relation to protein hydration, Intermolecular Forces, Springer, 1981, pp. 331. 28 Han Y H. Quantum chemistry study on the surface properties and dispersion mechanism of kaolinite and montmorillonite. Ph. D. Thesis. China University of Mining and Technology(Beijing), China, 2017 (in Chinese). 韩永华. 高岭石、蒙脱石表面性质及其分散机理的量子化学研究. 博士学位论文, 中国矿业大学(北京), 2017. 29 Chen J, Min F F, Liu L Y, et al. Applied Surface Science, 2019, 476, 6. 30 Chen J, Min F F, Liu L Y, et al. Journal of China Coal Society, 2016, 41(12), 3115 (in Chinese). 陈军, 闵凡飞, 刘令云, 等. 煤炭学报, 2016, 41(12), 3115. 31 Becke A D, Edgecombe K E. The Journal of Chemical Physics, 1990, 92, 5397. 32 Yang Z Q, Chai Z Y, Zhang H Y, et al. Journal of China Coal Society, 2021, 46(S1), 222 (in Chinese). 杨泽前, 柴肇云, 张海洋, 等. 煤炭学报, 2021, 46(S1), 222. 33 Min F F, Chen J, Peng C L. Journal of China Coal Society, 2018, 43(1), 242 (in Chinese). 闵凡飞, 陈军, 彭陈亮. 煤炭学报, 2018, 43(1), 242. 34 Steiner T, Desiraju G R. Chemical Communications, 1998, 8, 891.