Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (17): 112-115    https://doi.org/10.11896/j.issn.1005-023X.2017.017.016
  新材料新技术 |
高通量开发非晶合金的研究进展*
吕云卓, 覃作祥, 陆兴
大连交通大学材料科学与工程学院,大连 116028
Current Research Status of High-throughput Development of Amorphous Alloys
LU Yunzhuo, QIN Zuoxiang, LU Xing
School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028
下载:  全 文 ( PDF ) ( 1554KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 革新非晶合金成分的传统试错研发方法,加速非晶合金从研究到应用的进程,已成为非晶合金研究领域的迫切需求。高通量实验技术作为美国政府2011年6月提出的“材料基因组计划”的三大要素之一,可在短时间内完成大量样品的制备与表征,可将材料从发现到应用的速度至少提高1倍,成本至少降低1/2。高通量实验可以加速非晶合金成分的筛选和优化,其重要性在非晶合金的研究中日益凸显。文章首先简要回顾非晶合金成分的传统设计方法,然后着重介绍利用高通量实验方法研发非晶合金成分的最新进展,并简要分析高通量实验技术在非晶合金研究中面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕云卓
覃作祥
陆兴
关键词:  非晶合金  高通量  成分开发    
Abstract: Reforming the traditional research methods for developing amorphous alloy compositions, accelerating the process of amorphous alloy from research to application, have became the urgent needs in the research field of the amorphous alloys. High-throughput experimental technology, as one of the three major elements in the “materials genome project” proposed by United States government in June 2011, can prepare and characterize a large number of samples in a short time, can at least double the speed of materials from discovery to application, lower the cost at least a half. High-throughput experiments can accelerate the screening and optimizing of amorphous alloy compositions. Its importance is highlighted in the research field of amorphous alloy. This paper firstly give a brief review of the traditional designing methods of developing amorphous alloy compositions, and then introduces the progress of the research on the developing of amorphous alloys by high-throughput experimental methods, and then briefly analyzes the challenges of high-throughput experimental techniques in the study of amorphous alloys.
Key words:  amorphous alloy    high-throughput    composition development
               出版日期:  2017-09-10      发布日期:  2018-05-07
ZTFLH:  O751  
基金资助: 国家自然科学基金(51401041;51671042)
作者简介:  吕云卓:男,1985年生,博士,副教授,主要研究方向为激光3D打印非晶态合金 E-mail:luyz@djtu.edu.cn
引用本文:    
吕云卓, 覃作祥, 陆兴. 高通量开发非晶合金的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 112-115.
LU Yunzhuo, QIN Zuoxiang, LU Xing. Current Research Status of High-throughput Development of Amorphous Alloys. Materials Reports, 2017, 31(17): 112-115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.017.016  或          http://www.mater-rep.com/CN/Y2017/V31/I17/112
1 Johnson W L. Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull,1999,24(10):42.
2 Schroers J. Processing of bulk metallic glass[J]. Adv Mater,2010,22(14):1566.
3 Wang X J, Chen X D, Xia T D, et al. The current situation of amorphous alloy application[J]. Mater Rev,2006,20(10):75(in Chinese).
王晓军, 陈学定, 夏天东, 等. 非晶合金应用现状[J]. 材料导报,2006, 20(10):75.
4 Wang W H. The nature and properties of amorphous matter[J]. Prog Phys,2013, 33(5):177(in Chinese).
汪卫华. 非晶态物质的本质和特性[J]. 物理学进展,2013,33(5):177
5 Turnbull D. Under what conditions can a glass be formed?[J]. Contemp Phys, 1969,10(5):473.
6 Lu Z P, Tan H, Ng S C, et al. The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses[J]. Scr Mater, 2000,42(7):667.
7 Greer A L. Confusion by design[J]. Nature,1993,366(6453):303.
8 Egami T. Atomistic mechanism of bulk metallic glass formation[J]. J Non-Cryst Solids,2003,317(1-2):30.
9 Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys[J]. J Non-Cryst Solids,1993,156:473.
10 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater,2000,48(1):279.
11 Wang Y M, Qiang J B, et al. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion[J]. J Mater Res, 2003,18(3):642.
12 Chen W, Wang Y, Qiang J, et al. Bulk metallic glasses in the Zr-Al-Ni-Cu system[J]. Acta Mater,2003,51(7):1899.
13 Shen J, Zou J, Ye L, et al. Glass-forming ability and thermal stabi-lity of a new bulk metallic glass in the quaternary Zr-Cu-Ni-Al system[J]. J Non-Cryst Solids, 2005,351(30):2519.
14 Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys[J]. Mater Res Bull,2001,36(12):2183.
15 Miracle D B. On the universal model for medium-range order in amorphous metal structures[J]. J Non-Cryst Solids,2003,317(1):40.
16 Wang H Z, Wang H, Ding H, et al. Progress in high-throughput materials synthesis and characterization[J]. Sci Technol Rev,2015,33(10):31(in Chinese).
王海舟, 汪洪, 丁洪, 等. 材料的高通量制备与表征技术[J]. 科技导报, 2015,33(10):31.
17 Wang H, Xiang Y, Xiang X D, et al. Materials genome enables research and development revolution[J]. Sci Technol Rev,2015,33(10):13(in Chinese).
汪洪, 向勇, 项晓东, 等. 材料基因组-材料研发新模式[J]. 科技导报,2015, 33(10):13.
18 Ding S, Gregoire J, Vlassak J J, et al. Solidification of Au-Cu-Si alloys investigated by a combinatorial approach[J]. J Appl Phys,2012,111(11):114901.
19 Tsai P, Flores K M. A laser deposition strategy for the efficient identification of glass-forming alloys[J]. Metall Mater Trans A,2015,46(9):3876.
20 Tsai P, Flores K M. A combinatorial strategy for metallic glass design via laser deposition[J]. Intermetallics,2014,55:162.
21 Tsai P, Flores K M. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys[J]. Acta Mater,2016,120:426.
[1] 何鹏, 林盼盼. 基于材料基因组理念的钎焊材料开发与智能钎焊技术创新系统工程[J]. 材料导报, 2019, 33(1): 156-161.
[2] 周杰, 李克, 王彪, 艾凡荣. 添加Nd对Mg-Zn-Ca合金非晶形成能力和耐蚀性的影响[J]. 材料导报, 2019, 33(1): 73-77.
[3] 付正容,王修昌,金青林,谭军. 多孔非晶合金及其复合材料的制备技术研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 473-482.
[4] 赵燕春,许丛郁,袁小鹏,何旌,寇生中,李春燕,袁子洲. 块体非晶合金韧塑性研究现状[J]. 《材料导报》期刊社, 2018, 32(3): 467-472.
[5] 洪凯, 吴林, 蒋伟, 吴继礼, 张博. Cu-Zr非晶合金薄带的高温拉伸蠕变研究[J]. 材料导报, 2018, 32(24): 4309-4313.
[6] 黄飞, 康嘉杰, 岳文, 付志强, 朱丽娜, 王成彪. 超音速火焰喷涂制备铁基非晶合金涂层的研究现状[J]. 材料导报, 2018, 32(21): 3789-3795.
[7] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed