Please wait a minute...
材料导报  2022, Vol. 36 Issue (13): 20120198-6    https://doi.org/10.11896/cldb.20120198
  无机非金属及其复合材料 |
玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析
牛荻涛1,2,*, 罗扬1, 苏丽1, 黄大观1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
Fractal Analysis of Air-void Structure of Hybrid Basalt-Polypropylene Fibre Reinforced Concrete
NIU Ditao1,2,*, LUO Yang1, SU Li1, HUANG Daguan1
1 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 5727KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Rapid Air 457气孔分析仪测试了玄武岩-聚丙烯混杂纤维增强混凝土(HBPRC)的气孔结构,分析了不同纤维添加方式对混凝土累计气孔含量和气孔表面分形特征的影响。研究结果表明,玄武岩纤维、聚丙烯纤维以及玄武岩-聚丙烯混杂纤维的掺入使混凝土的累计气孔含量增大了76.5%~354.1%,并且混凝土的累计气孔含量随纤维掺量的增加而增大。HBPRC的气孔结构具有明显的分形特征且其分形特征具有尺度相关性,在小孔隙区、中孔隙区、大孔隙区和超大孔隙区,气孔面分形维数(DS)依次增大,但在孔径大于1 500 μm的区域没有分形特征。随着纤维的掺入,混凝土大孔隙区和超大孔隙区的DS发生了明显的变化,单掺0.1%(体积分数,下同)的玄武岩纤维或0.1%的聚丙烯纤维增大了大孔隙区和超大孔隙区的DS;掺入0.1%的玄武岩-聚丙烯混杂纤维对大孔隙区和超大孔隙区DS的影响较小;而掺入0.2%的玄武岩-聚丙烯混杂纤维显著减小了超大孔隙区的DS。通过细观分析,认为纤维形成的网络结构对混凝土拌合过程中气泡合并产生的抑制作用是HBPRC大孔隙区和超大孔隙区DS增大的主要原因,而纤维的弱分散性和长时间的搅拌会导致超大孔隙区的DS减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛荻涛
罗扬
苏丽
黄大观
关键词:  玄武岩-聚丙烯混杂纤维  自动图像处理  气孔结构  分形理论    
Abstract: The air-void structure of hybrid basalt-polypropylene fibre reinforced concrete (HBPRC) was investigated by using a Rapid Air 457 air-void analyser. The effects of basalt fibre, polypropylene fibre and hybrid basalt-polypropylene fibre on the cumulative air-void content and air-void surface fractal dimensions (DS) of concrete were analysed. The results indicate that the air-voids structure of the HBPRC has distinct fractal characteristics and its fractal features are scale-dependent and the incorporation of basalt fibre, polypropylene fibre and hybrid basalt-polypropylene fibre increases the cumulative air-void content of the concrete by 76.5% to 354.1%, and that the cumulative air-void content of the concrete increases with the increase of fibre content. The DS of HBPRC in the small-pore, medium-pore, macroporous and superporous regions increase sequentially, although there are no physical characteristics in the region with pore diameters greater than 1 500 μm. The incorporation of fibre has a significant effect on the DS of the macroporous and superporous regions. The DS of the macroporous and superporous zones are increased with 0.1% (volume fraction, the same below) basalt and 0.1% polypropylene fibre alone; the addition of 0.1% hybrid basalt-polypropylene fibre has little effect on the DS of the macroporous and superporous region; the addition of 0.2% hybrid basalt-polypropylene fibre significantly reduces the DS of the superporous region. Through microscopic analysis, it is suggested that the suppressive effect of the fibre-formed network structure on bubble merging is the main reason for the increase of DS of the macroporous and superporous zones, while the weak dispersion of the fibres and prolonged agitation lead to the deterioration of the pore structure in the macroporous and superporous zones.
Key words:  hybrid basalt-polypropylene fibre    automatic image processing    air-void structure    fractal theory
出版日期:  2022-07-10      发布日期:  2022-07-12
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金(51590914);陕西省自然科学基础研究计划项目(2019JQ-481)
通讯作者:  * niuditao@163.com   
作者简介:  牛荻涛,1991年9月毕业于哈尔滨工业大学,获得工学博士学位。现为西安建筑科技大学教授、博士研究生导师,国家杰出青年基金获得者,我国混凝土结构耐久性领域的学术带头人,教育部创新团队“现代混凝土结构安全性与耐久性”带头人,享受国务院政府特殊津贴专家,国家自然科学基金评审组专家。2013年入选国家百千万工程领军人才(“万人计划”)。兼任中国土木工程学会工程质量分会理事、中国建筑学会村镇防灾专业委员会副主任委员、美国混凝土学会(ACI)中国分会副理事长。主要研究领域有混凝土结构耐久性及其对策、结构可靠度与工程结构抗震、纤维材料在混凝土结构中的应用及加固技术与方法等。获国家科学技术进步二等奖1项。出版专著2部,发表学术论文200余篇。
引用本文:    
牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
NIU Ditao, LUO Yang, SU Li, HUANG Daguan. Fractal Analysis of Air-void Structure of Hybrid Basalt-Polypropylene Fibre Reinforced Concrete. Materials Reports, 2022, 36(13): 20120198-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120198  或          http://www.mater-rep.com/CN/Y2022/V36/I13/20120198
1 Zollo R F. Cement and Concrete Composites, 1997, 19(2), 107.
2 Yao W, Li J, Wu K. Cement and Concrete Research, 2003, 33(1), 27.
3 Mehdipour I, Vahdani M, Libre N A, et al. Magazine of Concrete Research, 2013, 65(17), 1011.
4 Li J J, Niu J G, Wan C J, et al. Construction and Building Materials, 2016, 118, 27.
5 Everett D H. Pure and Applied Chemistry, 1972, 31(4), 577.
6 Ozyildirim C. Transportation Research Record, 2004, 1893(1), 70.
7 Jin S, Zhang J, Huang B. Construction and Building Materials, 2013, 47, 126.
8 Flores Medina N, Barluenga G, Hernández-Olivares F. Construction and Building Materials, 2015, 96, 556.
9 Zhang P, Li D, Qiao Y, et al. Journal of Materials in Civil Engineering, 2018, 30(10), 04018265.
10 Chatterji S, Gudmundsson H. Cement and Concrete Research, 1977, 7(4), 423.
11 Nambiar E K K, Ramamurthy K. Cement and Concrete Research, 2007, 37(2), 221.
12 Zhang J, Gao X, Yu L. Construction and Building Materials, 2020, 239, 117843.
13 Giergiczny Z, Glinicki M A, Sokołowski M, et al. Construction and Buil-ding Materials, 2009, 23(6), 2451.
14 Jakobsen U H, Pade C, Thaulow N, et al. Cement and Concrete Research, 2006, 36(8), 1444.
15 Neithalath N, Sumanasooriya M S, Deo O. Materials Characterization, 2010, 61(8), 802.
16 Zarnaghi V N, Fouroghi-Asl A, Nourani V, et al. Construction and Buil-ding Materials, 2018, 193, 557.
17 Tang S W, He Z, Cai X H, et al. Construction and Building Materials, 2017, 143, 395.
18 Pigeon M, Malhotra V M. Journal of Materials in Civil Engineering, 1995, 7(4), 208.
19 Gao P W, Wu S X, Lin P H, et al. Construction and Building Materials, 2006, 20(8), 586.
20 Kim J, Choi Y C, Choi S. Applied Surface Science, 2018, 428, 304.
21 Vordos N, Giannakopoulos S, Vansant E F, et al. International Urology and Nephrology, 2018, 50(10), 1779.
22 Cui S, Liu P, Cui E, et al. Construction and Building Materials, 2018, 173, 124.
23 Hu W. Modeling the influence of composition and pore structure on mechanical properties of autoclaved cellular concrete. Ph.D. Thesis, University of Pittsburgh, USA, 1997.
24 Lan S H, Li H Y, Dong X P. Journal of the Chinese Ceramic Society, 2016, 35(12), 4264 (in Chinese).
蓝绍衡, 李红云, 董喜平.硅酸盐通报, 2016, 35(12), 4264.
25 Niu D T, Huang D G, Zheng H, et al. Applied Sciences, 2019, 9(8), 1602.
26 Li X K, Sun L, Zhou Y Y, et al. Applied Mechanics and Materials, 2012, 238, 26.
27 Blunt J, Jen G, Ostertag C P. Corrosion Science, 2015, 92, 182.
28 Li D, Niu D T, Fu Q, et al. Cement and Concrete Composites, 2020, 109, 103555.
29 Zeiml M, Leithner D, Lackner R, et al. Cement and Concrete Research, 2006, 36(5), 929.
30 Falconer K. Fractal geometry: mathematical foundations and applications, John Wiley & Sons, UK, 2004.
31 Mehta P K, Monteiro P J M. Concrete: microstructure, properties, and materials,McGraw-Hill Education, USA, 2014.
32 Wang X, Wang X H, Sadati S, et al. Construction and Building Mate-rials, 2019, 211, 174.
33 Petit P, Javierre I, Jézéquel P H, et al. Cement and Concrete Research, 2014, 60, 37.
34 Zhang B Q, Li S F. Industrial & Engineering Chemistry Research, 1995, 34, 1383.
35 Fonseca P C, Scherer G W. Materials and Structures, 2014, 48(10), 3087.
36 Zhang Z, Ansari F, Vitillo N. ACI Materials Journal, 2005, 102(1), 42.
37 Peterson K, Carlson J, Sutter L, et al. Materials Characterization, 2009, 60(7), 710.
38 Zhang B, Liu W, Liu X. Applied Surface Science, 2006, 253(3), 1349.
39 Zeng Q, Li K, Fen-Chong T, et al. Applied Surface Science, 2010, 257(3), 762.
40 Atzeni C, Pia G, Sanna U, et al. Construction and Building Materials, 2008, 22(8), 1607.
41 Xu L, Deng F, Chi Y. Construction and Building Materials, 2017, 145, 619.
42 Gao Y, De Schutter G, Ye G, et al. Construction and Building Materials, 2013, 38, 1051.
43 Ranjbar N, Talebian S, Mehrali M, et al. Composites Science and Techno-logy, 2016, 122, 73.
44 Ayub T, Shafiq N, Nuruddin M F. Advances in Materials Science and Engineering, 2014, 2014, 587686.
45 Mazzucco G, Majorana C E, Salomoni V A. Computers & Structures, 2015, 154, 17.
46 Wang X H, Jacobsen S, He J Y, et al. Cement and Concrete Research, 2009, 39(8), 701.
47 Kayali O. Materials and Structures, 2004, 37(5), 318.
48 Fu X L, Lu W M, Chung D D. Cement and Concrete Research, 1996, 26(7), 1007.
49 Fu X L, Lu W M, Chung D D. Cement and Concrete Research, 1998, 28(2), 183.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 王昌进, 张赛, 徐静磊. 燃料电池气体扩散层的分形模型研究[J]. 材料导报, 2022, 36(13): 20120143-6.
[3] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[4] 王璜琪, 薄艾, 王栋民, 张双成, 吕南. 连续级配集料分形理论的误差分析及求解示例[J]. 材料导报, 2021, 35(z2): 254-258.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed