Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24189-24194    https://doi.org/10.11896/cldb.20080321
  高分子与聚合物基复合材料 |
缝合增强复合材料帽型加筋壁板界面拉脱性能
余坤, 文立伟, 宦华松, 唐鹏刚
南京航空航天大学材料科学与技术学院,南京 210016
Interface Pull-off Performance of Composite Hat-stiffened Panel Reinforced by Stitching
YU Kun, WEN Liwei, HUAN Huasong, TANG Penggang
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 6239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了防止复合材料帽型加筋壁板结构在服役过程中发生筋条与蒙皮的脱粘失效,引入了缝合技术来提高筋条-蒙皮界面拉脱性能。采用单线弯针缝合设备缝合纤维编织布,通过真空辅助树脂灌注技术(VARI)固化成型,制备缝合帽型加筋壁板试样。通过对试样进行筋条拉脱试验和有限元数值模拟,研究界面的失效机制及缝合参数对帽型加筋壁板界面结合性能的影响规律。结果表明:在拉脱载荷作用下,缝合试样的峰值载荷比未缝合试样明显增大。帽型试样的拉脱承载力随缝合密度的增大先增加后减小,在缝合密度(注:缝合密度表示缝合针距(单位mm)×行距(单位mm),下文同)为5×10时,相比未缝合试样,最高增加了26.7%;帽型接头的拉脱承载力随缝线细度的增加而增加,在缝线细度为1 500 D时增加了39.7%。蒙皮/筋条厚度比为2时,结构拉脱承载力增加了27.35%,缝合的增强效果最明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余坤
文立伟
宦华松
唐鹏刚
关键词:  复合材料  缝合  帽型加筋壁板  力学性能  有限元分析    
Abstract: In order to prevent the debonding failure between stiffener and skin of composite hat-stiffened panel, stitching technology was adopted to improve the pull-off performance of stiffener-skin interface. The fiber fabric was stitched with single-wire curved needle stitching equipment, and then cured by VARI (Vacuum assisted resin infusion technology) to prepare stitched hat-stiffened panel samples. The failure mechanism of interface and the influence of stitching parameters on interface bonding performance were researched by pull-off test and finite element numerical simulation. Results show that the peak load of stitched samples is significantly higher than that of unstitched ones. The pull-off bearing capacity increases first and then decreases with the increase of stitch density, which is up to 26.7% higher than that unstitched ones when stitch density (Note: stitch density means stitch distance (unit mm)× row spacing (unit mm), the same below) is 5×10. The pull-off bearing capacity increases with the increase of thread fineness, and increases by 39.7% when the thread fineness reaches to 1 500 D. When skin/stiffener thickness ratio is 2, the pull-off bearing capacity increases by 27.35%, which achieves the best stitching effect.
Key words:  composites    stitching    hat-stiffened panel    mechanical properties    finite element analysis
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TB332  
基金资助: 国防基础科研计划(JCKY2019204A001);大飞机材料专项(JPPT-KF2019-4-1a)
通讯作者:  wenliwei@nuaa.edu.cn   
作者简介:  余坤,南京航空航天大学在读硕士研究生,主要从事先进复合材料缝合增强技术的研究。文立伟,南京航空航天大学材料科学与技术学院副教授,硕士研究生导师。2005年获得哈尔滨工业大学博士学位,现从事先进复合材料自动化成型技术研究。近年来发表有关铺放成型技术方面的论文50余篇,申请国家专利10余项。
引用本文:    
余坤, 文立伟, 宦华松, 唐鹏刚. 缝合增强复合材料帽型加筋壁板界面拉脱性能[J]. 材料导报, 2021, 35(24): 24189-24194.
YU Kun, WEN Liwei, HUAN Huasong, TANG Penggang. Interface Pull-off Performance of Composite Hat-stiffened Panel Reinforced by Stitching. Materials Reports, 2021, 35(24): 24189-24194.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080321  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24189
1 Das T K, Ghosh P, Das N C. Advanced Composites and Hybrid Mate-rials, 2019, 2(2), 214.
2 Yap J W H, Scott M L, Thomson R S, et al. Composite Structures, 2002, 57(1), 425.
3 Sun Z Q, Wu A R. Materials Reports, 2015, 29(11), 61(in Chinese).
孙振起, 吴安如.材料导报, 2015, 29(11), 61.
4 Gnaba I, Legrand X, Wang P, et al. Journal of Industrial Textiles, 2019, 49(1), 71.
5 Mignery L A, Tan T M, Sun C T. ASTM STP, 1985, DOI:10.1520/STP36315S.
6 Parlapalli M R, Soh K C, Shu D W, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(9), 2024.
7 Wen L W, Yu K, Feng Q Q, et al. Materials Reports, 2020, 34(22), 22162(in Chinese).
文立伟, 余坤, 封桥桥, 等.材料导报, 2020, 34(22), 22162.
8 Yan S Y, Liang S, Chen X L, et al. Composites Science and Enginee-ring, 2020(5), 19(in Chinese).
闫盛宇, 梁森, 陈新乐, 等.复合材料科学与工程, 2020(5), 19.
9 Sheng Y, Xiong K, Bian K, et al. Acta Materiae Compositae Sinica, 2013, 30(6), 185(in Chinese).
盛仪, 熊克, 卞侃, 等.复合材料学报, 2013, 30(6), 185.
10 Suh S S, Han N L, Yang J M, et al. Composite structures, 2003, 62(2), 213.
11 Kim C H, Jo D H, Choi J H. Composite Structures, 2017, 178, 225.
12 Khalili S M R, Ghaznavi A. Applied Composite Materials, 2013, 20(1), 41.
13 Kong B, Chen P H, Li M J, et al. Acta Materiae Compositae Sinica, 2018,35(4), 834(in Chinese).
孔斌, 陈普会, 李梦佳, 等.复合材料学报, 2018, 35(4), 834.
14 Wen L W, Yu K, Huan H S. Acta Aeronautica et Astronautica Sinica, 2021, 42(2), 142(in Chinese).
文立伟, 余坤, 宦华松.航空学报, 2021, 42(2), 142.
15 Turon A, Dávila C G, Camanho P P, et al. Engineering Fracture Mechanics, 2007, 74(10), 1665.
16 Barbero E J. Finite element analysis of composite materials using Abaqus, CRC Press, US, 2013.
17 Ye Q. Research on cohesive zone model of laminated composites and its applications. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2012(in Chinese).
叶强. 层合复合材料的粘聚区模型及其应用研究. 博士学位论文, 南京航空航天大学, 2012.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[3] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[4] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[5] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[6] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[7] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[8] 袁碧亮, 李传强, 董勇, 张鹏. 增材制造AlxCoCrFeNi系高熵合金的研究进展[J]. 材料导报, 2021, 35(z2): 417-423.
[9] 曹鹏, 雷高峰, 苏成明, 舒林森, 石舒婷, 贾北北, 田伟红. 不同送料工艺对液压支架激光熔覆再制造的影响[J]. 材料导报, 2021, 35(z2): 424-427.
[10] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[11] 沈楚, 冯庆, 王思琦, 杨勃, 何秀玲, 李博, 苗东, 朱许刚. 退火温度对旋压工业纯钛TA1组织演变与力学性能的影响[J]. 材料导报, 2021, 35(z2): 452-455.
[12] 胡捷, 程仁菊, 李上民, 谭磊, 李春雨, 刘运, 宋洁, 杨明波. Y对Mg-10Gd-xY-1Zn-0.5Zr(x=1,2)镁合金铸态显微组织和力学性能的影响[J]. 材料导报, 2021, 35(z2): 456-459.
[13] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[14] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[15] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed