Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24177-24181    https://doi.org/10.11896/cldb.20030123
  高分子与聚合物基复合材料 |
功能粒子种类对涂层涤棉织物电磁性能的影响
刘元军1,2,3, 王翊1, 侯硕4, 武翔1, 赵晓明1,2,3
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学天津市先进纺织复合材料重点实验室,天津 300387
3 天津市先进纤维与储能技术重点实验室,天津 300387
4 中广核研究院有限公司,深圳 518124
Influence of Functional Particles on Electromagnetic Properties of Coated Polyester Cotton Fabrics
LIU Yuanjun1,2,3, WANG Yi1, HOU Shuo4, WU Xiang1, ZHAO Xiaoming1,2,3
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
3 Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China
4 China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518124, China
下载:  全 文 ( PDF ) ( 1976KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以平纹涤棉混纺织物为基体,以聚氨酯为粘着剂,以石墨、氧化铋、石墨烯及三者混合物为功能粒子,用涂覆法制备涂层涤棉织物。主要探讨功能粒子种类对材料的介电性能、吸波性能和屏蔽性能的影响。研究表明,功能粒子种类对电磁性能影响较大。在0.01~3 GHz范围内,以石墨烯为功能粒子,材料的介电常数最大、电磁防护性能最好;在1.98~3 GHz范围内,将石墨、氧化铋和石墨烯共混作为功能粒子,可优化阻抗匹配,使反射损耗最小、电磁波吸收能力最好,吸波性能优于单一功能粒子。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
LIU Yuanjun
WANG Yi
HOU Shuo
WU Xiang
ZHAO Xiaoming
2
3
关键词:  石墨  氧化铋  石墨烯  涂层  电磁性能    
Abstract: The coated polyester cotton fabrics were prepared by coating method, and on plain polyester cotton blended fabrics, polyurethane was used as adhesive, while graphite, bismuth oxide, graphene and their mixtures were used as functional particles. The influences of types of functional particles on dielectric properties, wave-absorbing properties and shielding properties to electromagnetic waves were explored. The results show that the types of functional particles have a great influence on the electromagnetic properties. Within the range 0.01—3 GHz, the coated polyester cotton fabrics with graphene used as the functional particles have the largest dielectric constant and the best electromagnetic protection performance. Within the range 1.98—3 GHz, the coated polyester cotton fabrics with the mixture of graphite, bismuth oxide and graphene used as the functional particles have great impedance matching, the minimum reflection loss, and the best electromagnetic wave absorption capacity, whose the electromagnetic performance was better than the single functional particles.
Key words:  graphite    bismuth oxide    graphene    coating    electromagnetic properties
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TS195.1  
基金资助: 中国工程院咨询研究项目(2021DFZD1);天津市科技计划项目创新平台专项(17PTSYJC00150);中国博士后科学基金特别资助项目(2019TQ0181);中国博士后科学基金面上资助项目(2019M661030);安徽省纺织结构复合材料国际联合研究中心开放基金资助(2021ACTC04)
通讯作者:  hou_shuo@cgnpc.com.cn; texzhao@163.com   
作者简介:  刘元军,天津工业大学纺织科学与工程学院副教授、研究生导师,毕业于天津工业大学,获工学博士学位,主要从事电磁防护材料研究。主持或参与12项科研项目,发表SCI期刊论文36篇,以第一发明人申请了专利12项。侯硕,出生于1982年9月,中广核研究院有限公司,正高级工程师,研究领域为核电装备及材料。赵晓明,天津工业大学纺织学院教授、博士生导师。英国Heriot-Watt大学博士,中国产业用纺织品行业协会特种纺织品分会秘书长,主要从事柔性防护材料性能的研究,近5年在国内外重要期刊发表文章100多篇,申报发明专利30余项。
引用本文:    
刘元军, 王翊, 侯硕, 武翔, 赵晓明. 功能粒子种类对涂层涤棉织物电磁性能的影响[J]. 材料导报, 2021, 35(24): 24177-24181.
LIU Yuanjun, WANG Yi, HOU Shuo, WU Xiang, ZHAO Xiaoming,2,3. Influence of Functional Particles on Electromagnetic Properties of Coated Polyester Cotton Fabrics. Materials Reports, 2021, 35(24): 24177-24181.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030123  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24177
1 Liu Y J, Zhao X M. Journal of the Textile Institute, 2017, 108(9), 1628.
2 Wang Y, Liu Y J, Zhao X M. Advanced Textile Technology, 2021, 29(1), 2(in Chinese).
王翊, 刘元军, 赵晓明.现代纺织技术, 2021, 29(1), 2.
3 Liu Y J, Wang Y. Textile Research Journal, 2020,91(9-10), 973
4 Sun J R. Preparation and dielectric properties of polyaniline/graphene composite coated fabrics. Master's Thesis, Tiangong University, China, 2019(in Chinese).
孙嘉瑞. 聚苯胺/石墨烯复合涂层织物的制备及介电性能研究. 硕士学位论文, 天津工业大学, 2019.
5 Ren W, Zhu H X, Yang Y Q, et al. Composites Part B: Engineering, 2020, 184, 107745.
6 Wang C, Guo R H, Lan J W, et al. Journal of Materials Science: Mate-rials in Electronics, 2018, 29(10), 8011.
7 Sun J, Wang L M, Yang Q, et al. Progress in Organic Coatings, 2020, 141, 105552.
8 Wang L J, Mao P L. Journal of Textile Research, 2018, 39(9), 95(in Chinese).
王利君, 毛鹏丽. 纺织学报, 2018, 39(9), 95.
9 Wang H, Long J, Wang Y, et al. Textile Research Journal, 2019, 89(13), 2543.
10 Liu Y J, Sun J R, Ye M C, et al. Journal of Textile Science and Engineering, 2018, 35(4), 1(in Chinese).
刘元军, 孙嘉瑞, 叶美晨,等.纺织科学与工程学报, 2018, 35(4), 1.
11 Liu Y J, Li W Y, Zhao X M. Fibres & Textiles in Eastern Europe, 2019, 27(6), 63.
12 Liu Y J, Liu X L, Yin G. Journal of Textile Science and Engineering, 2018, 35(3), 41(in Chinese).
刘元军, 刘旭琳, 殷光.纺织科学与工程学报, 2018, 35(3), 41.
13 Liu Y. The preparation of carbon nanosheet and its properties. Ph.D. Thesis, Harbin Engineering University, China, 2012(in Chinese).
刘洋. 碳纳米片的制备及其性能研究. 博士学位论文, 哈尔滨工程大学, 2012.
14 Fan Y Z, Yang H B, Li M H, et al. Materials Chemistry and Physics, 2009, 115(2-3), 696.
15 Zhang X J, Wang G S, Cao W Q, et al. RSC Advances, 2014, 4(38), 19594.
16 Yang X Z. Preparation and characterization of composite photocatalyst on bismuth oxide/graphene/strontium ferrite modified with samarium. Master's Thesis, Chongqing University, China, 2018(in Chinese).
杨雪珍. 氧化铋/石墨烯/钐改性锶铁氧体复合光催化剂的制备及性能表征. 硕士学位论文, 重庆大学, 2018.
17 Sayyed M I, Kaky K M, Mhareb M H A, et al. Radiation Physics and Chemistry, 2019, 161, 77.
18 Yu Q, Wang Y Y, Chen P, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(15), 1448.
19 Chu H R, Zeng Q, Chen P, et al. Journal of Alloys and Compounds, 2017, 719, 296.
20 Liu Y C. Journal of Chengdu Textile College, 2016, 33(1), 108(in Chinese).
刘元臣.成都纺织高等专科学校学报, 2016, 33(1), 108.
21 Gu H, Yu W D, Zhou S. Progress in Textile Science & Technology, 2015, 1, 16(in Chinese).
顾昊, 于伟东, 周胜.纺织科技进展, 2015, 1, 16.
22 Wang Y J, Huang W, Huang Y W, et al. Materials Reports B: Reseach Papers, 2019, 33(5), 1624(in Chinese).
王玉江, 黄威, 黄玉炜,等.材料导报:研究篇, 2019, 33(5), 1624.
23 Zhang L, Zhou Y L, Zhang B, et al. Materials Reports B: Reseach Papers, 2016, 30(6), 32(in Chinese).
张黎, 周远良, 张彬,等.材料导报:研究篇, 2016, 30(6), 32.
24 Jin Y. Preparation of graphene/epoxy composites resin and their dielectric properties. Master's Thesis, Harbin University of Science and Technology, China, 2017(in Chinese).
靳洋. 石墨烯/环氧树脂复合材料的制备及其介电性能的研究. 硕士学位论文, 哈尔滨理工大学, 2017.
25 Chen G H. Study on preparation, properties and mechanism of low-temperature co-fired glass ceramic materials. Ph.D. Thesis, Central South University, China, 2006(in Chinese).
陈国华. 低温共烧玻璃陶瓷材料的制备及性能、机理研究. 博士学位论文, 中南大学, 2006.
26 Hou J. Studies on the preparation and properties of composite absorbing coatings with hydrotalcite, graphite, SiC and ferrite. Ph.D. Thesis, Ocean University of China, China, 2007(in Chinese).
侯进. 水滑石、石墨、碳化硅以及铁氧体复合吸波涂层制备与性能研究. 博士学位论文,中国海洋大学, 2007.
27 Bai Y F. Preparation and microwave absorbing properties of graphene-based magnetic particle functional composites. Master's Thesis, North University of China, China, 2019(in Chinese).
白永飞. 石墨烯基磁性功能粒子制备及吸波性能研究. 硕士学位论文, 中北大学, 2019.
28 Wang T, Zhang J M, Wang P, et al. Journal of Magnetic Materials and Devices, 2016, 47(6), 9(in Chinese).
王涛, 张峻铭, 王鹏,等.磁性材料及器件, 2016, 47(6), 9.
[1] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[2] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[3] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[4] 陈昌隆, 赵宜妮, 李玉阁. 液体高速冲蚀与防护涂层研究现状[J]. 材料导报, 2021, 35(z2): 361-366.
[5] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[6] 蒋星宇, 王洁琼, 邱琳琳, 白冰, 金正飞, 梅德强, 杜平凡. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(z2): 470-478.
[7] 张凯, 桂泰江, 吴连锋, 丛巍巍, 吕钊. 仿生物天然防污策略的研究与发展[J]. 材料导报, 2021, 35(z2): 550-553.
[8] 郑健飞, 朱思龙, 聂龙辉. Cu2O/g-C3N4异质结光催化材料的研究进展[J]. 材料导报, 2021, 35(Z1): 33-41.
[9] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[10] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[11] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[12] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[13] 倪嘉, 史昆, 薛松海, 赵军, 刘时兵, 刘鸿羽, 李重阳. 航空发动机用热障涂层陶瓷材料的发展现状及展望[J]. 材料导报, 2021, 35(Z1): 163-168.
[14] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[15] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed