Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 573-578    
  高分子与聚合物基复合材料 |
正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究
张奇, 张震东, 任杰
南京理工大学机械工程学院,南京 210094
Experimental Study on Quasi-static Compression of Multi-cell Structure of Hexagon Glass Fiber Reinforced Composites
ZHANG Qi, ZHANG Zhendong, REN Jie
Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 3633KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以正六边形玻璃纤维增强复合材料多胞结构为研究对象,对两种壁厚的正六边形玻璃纤维多胞结构管进行准静态压缩试验,分析了多胞结构管的失效模式和吸能特性。结果表明:在准静态压缩过程中,多胞结构及单胞管均表现为渐进破坏模式,单胞管在壁厚中间产生层间裂纹,裂纹不断扩展使胞元各边产生分层现象,外层向外卷曲扩展,内层向内卷曲扩展且相互挤压形成块状碎屑堆积在管孔,多胞结构管非粘接面在胞元壁厚中间分层,粘接面发生不同程度的脱粘开裂,并向粘接面两侧卷曲,粘接面的相邻面分层后,外层在向外卷曲扩展并相互挤压而发生一定角度的扭曲;多胞结构胞元数量和胞元壁厚对试件的压缩性能和吸能特性有显著影响,不同厚度的多胞结构在压缩过程中,几种多胞结构的实际平均载荷相比相对平均载荷提高了35.7%~77.5%;多胞结构的比吸能和胞元壁厚呈正相关,与胞元数量无明显相关性,本试验最小比吸能为42.5 J/g,最大比吸能为70.9 J/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张奇
张震东
任杰
关键词:  玻璃纤维  复合材料  准静态压缩  多胞结构  吸能    
Abstract: In this paper, the multi-cell structure of the regular hexagonal glass fiber reinforced composite material was used as the research object. The quasi-static compression test was carried out on the regular hexagonal glass fiber multi-cell structure tube with two wall thicknesses, and the failure mode and energy absorption of the multi-cell structure tube were analyzed. The results show that during the quasi-static compression process, both the multi-cell structure and thesingle cell tube show a progressive failure mode. The single cell tube produces interlayer cracks in the middle of the wall thickness. The outer layer curls and expands outward, and the inner layer curls and expands inward and squeezes each other to form blocky debris that accumulates in the tube hole. The non-adhesive surface of the multicellular structure tube is layered in the middle of the cell wall thickness, and the bonding surface has different degrees of debonding, and curling to both sides of the bonding surface. After the adjacent surfaces of the bonding surface are layered, the outer layer curls and expands outwards and squeezes each other to twist at a certain angle; the number of cells in the multicellular structure and the cell wall thickness have a significant effect on the compression performance and energy absorption characteristics of the specimen. During the compression process of multi-cell structures with different thicknesses, the actual average load of several multi-cell structures increases by 35.7% to 77.5% compared with the relative average load; the specific energy absorption of the multicellular structure is positively correlated with the cell wall thickness, and has no obvious correlation with the number of cells. In this experiment, the minimum specific energy absorption is 42.5 J/g, and the maximum specific energy absorption is 70.9 J/g.
Key words:  glass fiber    composite material    quasi-static compression    multi-cell structure    energy absorption
                    发布日期:  2021-12-09
ZTFLH:  TB332  
基金资助: 国家自然科学基金(1190020051)
通讯作者:  renjie@njust.edu.cn   
作者简介:  张奇,南京理工大学硕士研究生,于2019年入学南京理工大学。
任杰,南京理工大学副教授,主持国家自然科学基金、国防973项目专题研究、火箭军预研、江苏省自然科学基金、航天高校联合创新基金等纵向科研项目,以及横向科研若干项。“十一五”以来,作为主要研究人员参与国家安全重大基础研究、国防基础科研、兵器预先研究和二炮预先研究项目等10余项。参与过多个兵器、航天系统的研制工作。
引用本文:    
张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
ZHANG Qi, ZHANG Zhendong, REN Jie. Experimental Study on Quasi-static Compression of Multi-cell Structure of Hexagon Glass Fiber Reinforced Composites. Materials Reports, 2021, 35(z2): 573-578.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/573
1 Liu Z,Zhang L,Yu E,et al. Current Organic Chemistry,2015,19(11),991.
2 Feng W T,Zou G J,Ding Y,et al. Ind. Eng. Chem. Res.,2019,58(17),7217.
3 Autay R,Missaoui S,Mars J,et al. Polym Compos,2019,27(9),587.
4 叶振兴,王欧白,钟绍信,等.塑料工业,2020,48(05),123.
5 Senthil Gavaskar S, Madhu S. Materials Today: Proceedings,2020,22(3),1149.
6 冯振宇,周坤,裴惠,等.高分子材料科学与工程,2019,35(08),94.
7 Nazanin Pournoori,Guilherme Correa Soares,Olli Orell,et al. Internatio-nal Journal of Impact Engineering,2020,(147),734.
8 Andrews Boakye,Rafui King Raji,Pibo Ma,et al. Autex Research Journal, 2020,20(2),101.
9 Zhao Y,Chen L M,Du B,et al. Thin-Walled Structures,2019,144,106366.
10 Ahmed S. Mohamed,Othman Laban,Faris Tarlochan,et al. Thin-Walled Structures,2019,(138),404.
11 钟卫洲,宋顺成,张青平,等.工程力学,2009,26(12),105.
12 王雪琴,张震东,马大为,等.复合材料学报,1-10[2020-12-15]. https://dio.org/10.13801/j.cnki.fhclxb.20201201.003.
13 Zhu G H,Yu Q,Zhao X,et al. Composite Structures,2020,233,111631.
14 Zhou J X,Qin R X,Chen B Z. Thin-Walled Structures,2019,145,106386.
15 Chen T T,Zhang Y,Lin J M,et al. Thin-Walled Structures,2019,(142),116.
16 Mohammadbagher B. Azimi, Masoud Asgari & Hamidreza Salaripoor. International Journal of Crashworthiness,2020,25(6),628.
[1] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[2] 郭建业, 赵英民, 李文静, 杨洁颖, 王瑞杰, 苏力军. 耐高温二氧化硅气凝胶复合材料制备及其导热研究[J]. 材料导报, 2021, 35(z2): 90-93.
[3] 冯斯桐, 王林杰, 欧金法, 罗劭娟, 严凯, 吴传德. 钙钛矿量子点与金属有机框架复合材料的研究进展[J]. 材料导报, 2021, 35(z2): 298-305.
[4] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[5] 高玉龙, 王松, 张联合, 台永丰. 轨道车辆复合材料层压板结构的超声检测方法研究[J]. 材料导报, 2021, 35(z2): 433-436.
[6] 马砺, 师童, 雷燕飞, 刘西西, 王昕, 于文聪, 何铖茂. 含Sb2O3/ZHS的PVC复合材料阻燃抑烟性能研究[J]. 材料导报, 2021, 35(z2): 529-534.
[7] 罗锐祺, 刘勇琼, 廖英强, 周剑. 碳纤维增强环氧树脂复合材料力学性能影响因素的研究进展[J]. 材料导报, 2021, 35(z2): 558-563.
[8] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[9] 杨俊, 何创创, 罗小芳. 短切玻纤含量对TiO2/PTFE复合材料性能的影响[J]. 材料导报, 2021, 35(z2): 570-572.
[10] 杨康, 张子傲, 杨丽, 耿昊, 丁一宁. 泡沫夹芯厚度对碳纤维复合材料夹层板冲击性能的影响[J]. 材料导报, 2021, 35(z2): 579-582.
[11] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[12] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[13] 于冬雪, 于化杰, 黎红兵, 梁爽. FRP建筑材料的结构性能及应用综述[J]. 材料导报, 2021, 35(z2): 660-66.
[14] 胡炜杰, 钟明建, 杨营, 盘茂森, 任清刚. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(z2): 627-633.
[15] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed