Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4193-4198    https://doi.org/10.11896/cldb.18110061
  高分子与聚合物基复合材料 |
复合材料残余应力和固化变形数值模拟及本构模型评价
乔巍1, 姚卫星1,2, 马铭泽1
1 南京航空航天大学机械构件力学及控制国家重点实验室,南京 210016
2 南京航空航天大学飞行器先进设计技术国防重点学科实验室,南京 210016
Numerical Simulation and Constitutive Models Evaluation of Residual Stresses and Process-induced Deformations of Composite Structures
QIAO Wei1, YAO Weixing1,2, MA Mingze1
1 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
2 Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016
下载:  全 文 ( PDF ) ( 3707KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了评价不同固化本构模型,建立了预测复合材料构件残余应力/应变和固化变形的三维数值模型。该模型由热化学分析模块和热力分析模块构成,考虑了热化学耦合、材料性能的各向异性、化学收缩及黏弹性等因素。基于线弹性、黏弹性和Path-dependent三种典型的本构模型,预测了构件的残余应力/应变及固化变形。通过与试验结果对比,验证了所建数值模型的有效性,并重点研究了不同本构模型的适用性。结果表明,黏弹性本构模型最佳,对构件的残余应力/应变及固化变形的预测结果均较好;Path-dependent本构模型次之,对构件的残余应变和固化变形的预测结果较好,但对构件的残余应力的预测结果稍差;线弹性本构模型最差,除了对构件的残余应变和较薄构件的固化变形的预测结果较好外,其他预测结果都较差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔巍
姚卫星
马铭泽
关键词:  复合材料  本构模型  残余应力  固化变形  黏弹性    
Abstract: For the sake of evaluating the applicability of various constitutive models, a three-dimensional numerical model was constructed to predict the residual stresses/strains and process-induced deformations of composite structures. The model consisted of thermo-chemical analysis mo-dule and thermo-mechanical analysis module, taking thermo-chemical coupling, anisotropy of material properties, chemical shrinkage and viscoelasticity into consideration. Three typical constitutive models of linear elasticity, viscoelasticity and path-dependent were employed to predict the residual stresses/strains and deformations. Furthermore, comparison of simulated results and test results were carried out to verify the validity of the constructed numerical model, and emphasis was put on the study of the applicability of various constitutive models. According to the results, the viscoelastic constitutive model performed best, presenting favorable predicted results of residual stresses/strains and deformations. The path-dependent constitutive model held slightly worse performance than the viscoelastic one, showing encouraging predicted results of resi-dual strains and deformations, nevertheless, unsatisfactory predicted results of residual stresses. The linear elastic constitutive model exhibited the worst performance, achieving accepted predicted result of the residual strains and deformations for only thinner composite structures.
Key words:  composite    constitutive model    residual stress    process-induced deformation    viscoelasticity
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  TB332  
基金资助: 江苏高校优势学科建设工程资助项目
作者简介:  乔巍,2016年至今于南京航空航天大学攻读博士学位,主要从事复合材料固化变形仿真及控制领域的研究;姚卫星,南京航空航天大学航空宇航学院教授、博导。主要从事复合材料结构制造-工艺一体化设计、飞行器的总体-气动-结构的综合设计技术、结构抗疲劳设计等领域研究。
引用本文:    
乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198.
QIAO Wei, YAO Weixing, MA Mingze. Numerical Simulation and Constitutive Models Evaluation of Residual Stresses and Process-induced Deformations of Composite Structures. Materials Reports, 2019, 33(24): 4193-4198.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110061  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4193
1 Li H J, Xiao J Y, Yang J S. Material Review A: Review Papers, 2016, 30(11), 97(in Chinese).李侯君, 肖加余, 杨金水. 材料导报: 综述篇, 2016, 30(11), 97.2 Wang Z Y, Guan Z D, Wang Q, et a1. Material Review B: Research Papers,2017, 31(1), 130(in Chinese).王仁宇, 关志东, 王乾, 等. 材料导报:研究篇, 2017, 31(1), 130.3 Shokrieh M M, Akbari S, Daneshvar A. Composite Structures, 2013, 96(4), 708.4 Shokrieh M M. Journal of Composite Materials, 2005, 39(24), 2213.5 Bogetti T A. Journal of Composite Materials, 1992, 26(5), 626.6 Johnston A, Vaziri R, Poursartip A. Journal of Composite Materials, 2001, 35(16), 1435.7 Kim Y K, White S R. Polymer Engineering & Science, 1996, 36(23), 2852.8 White S, Kim Y. Mechanics of Composite Materials & Structures, 1998, 5(2), 153.9 Zocher M A, Groves S E, Allen D H. International Journal for Numerical Methods in Engineering, 1997, 40(12), 2267.10 Svanberg J M, Holmberg J A. Composites Part A: Applied Science & Ma-nufacturing, 2004, 35(6), 711.11 Svanberg J M, Holmberg J A. Composites Part A: Applied Science & Ma-nufacturing, 2004, 35(6), 723.12 Min Z, Yuan Z Y, Wang Y J, et al. Acta Materiae Compositae Sinica, 2017, 34(10), 2254(in Chinese).闵荣, 元振毅, 王永军, 等. 复合材料学报, 2017, 34(10), 2254.13 Zhang J T, Shang Y D, Zhang M, et al. Acta Materiae Compositae Sinica, 2017, 34(5), 978(in Chinese).张江涛, 尚云东, 张梅, 等. 复合材料学报, 2017, 34(5), 978.14 Li D, Li X, Dai J, et al. Applied Composite Materials, 2017,5, 1.15 Ding A, Li S, Sun J, et al. Journal of Reinforced Plastics & Composites, 2016, 35(10), 807.16 Johnston A A. An integrated model of the development of process-induced deformation in autoclave processing of composite structure. Ph.D.Thesis, The University of New Brunswick, Canada, 1997.17 Garstka T, Ersoy N, Potter K D, et al. Composites Part A: Applied Science & Manufacturing, 2007, 38(12), 2517.18 Darrow D A, Smith L V. Journal of Composite Materials, 2002, 36(21), 2407.19 Ersoy N, Garstka T, Potter K, et al. Composites Part A: Applied Science & Manufacturing, 2010, 41(3), 401.20 Ding A, Li S, Wang J, et al. Applied Composite Materials, 2016, 23(5), 1.21 Wisnom M R, Potter K D, Ersoy N. Journal of Composite Materials, 2007, 41(11), 1311.22 Bapanapalli S K, Smith L V. Composites Part A: Applied Science & Ma-nufacturing, 2005, 36(12), 1666.23 Albert C, Fernlund G. Composites Science & Technology, 2002, 62(14), 1895.24 Ersoy N, Garstka T, Potter K, et al. Composites Part A: Applied Science & Manufacturing, 2010, 41(3), 410.
[1] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[2] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[3] 齐云霞, 赵小伟, 杨永新, 黄冬维, 赵辉玲, 丁海生, 程广龙. TiO2基光电化学传感器电极结构调控的研究进展[J]. 材料导报, 2019, 33(Z2): 48-52.
[4] 郑孝源, 赵子龙, 任志英. 碳掺杂TiO2纳米管的制备和表征及在污水处理方面的应用[J]. 材料导报, 2019, 33(Z2): 113-115.
[5] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[6] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[7] 张绪, 冯瑞, 张晔, 郭卫, 刘富. 民机复合材料帽型长桁压缩承载力分析与试验[J]. 材料导报, 2019, 33(Z2): 215-221.
[8] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[9] 韩艳, 王龙龙, 刘志浩. CFRP板加固含I型裂纹混凝土的断裂扩展规律[J]. 材料导报, 2019, 33(Z2): 304-308.
[10] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[11] 倪嘉, 柴皓, 史昆, 赵军, 刘时兵, 刘鸿羽, 崔亚迪. 颗粒增强钛基复合材料的研究进展[J]. 材料导报, 2019, 33(Z2): 369-373.
[12] 杨立, 汪鹏生, 张浩, 王丰, 杨雄刚, 冯江涛, 华堃池, 胡永成. 生物活性玻璃骨材料力学性能及成骨作用改性的研究进展[J]. 材料导报, 2019, 33(Z2): 553-558.
[13] 姚进, 毛龙, 刘小超, 李知函. 利用分级结构层状黏土构建高阻隔性脂肪族聚酯复合材料[J]. 材料导报, 2019, 33(Z2): 617-622.
[14] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[15] 郭强, 徐恒元, 何凯, 孙振萍, 李逸. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(Z2): 634-638.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed