Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 94-97    
  无机非金属及其复合材料 |
架空导线用热塑性复合芯棒卷绕试验及仿真
曾伟
上海电缆研究所有限公司,上海200093
Winding Test and Simulation of Thermoplastic Composite Core for Overhead Conductor
ZENG Wei
Shanghai Electric Cable Research Institute Co. Ltd., Shanghai 200093
下载:  全 文 ( PDF ) ( 2374KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热塑性复合芯棒轴向抗拉能力较强,径向剪切性能、抗压性能较弱,在芯棒生产、运送、架线过程中易出现芯棒内部纤维受损失效的情况,存在安全隐患。目前,并无热塑性复合芯棒的卷绕力学性能方面的相关研究,考虑到热塑性复合芯结构和性能与目前的热固性复合芯棒差异较大,有必要对卷绕半径进行重新设计。对相同直径芯棒进行了卷绕试验,获得了卷轴直径的有效范围。利用ABAQUS软件建立芯棒卷绕仿真模型,通过有限元软件的数值计算,得到相同直径芯棒卷绕在不同直径的卷轴上时,芯棒内部的等效应力。研究结果表明,最大的等效应力集中分布在复合芯棒的最外侧,轴向拉/压应力随着卷轴半径的增大而减小。本研究可为架空导线用热塑性复合芯棒卷绕试验提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾伟
关键词:  架空导线  复合芯棒  热塑性  卷绕试验    
Abstract: The rmoplastic composite core has a strong axial tensile capacity, while the properties of radial shear resistance,compressive capacity are weak. In the process of manufacture, transport and stringing, fiber damage failure is easy to occur, and pose a safety hazard. At present, there is little research on the bending performance of carbon fiber reinforced thermoplastic composite core, considering the structure and properties of thermoplastic composite core and there are big gaps in thermoset composite core, it is necessary to redesign bending radius. A winding test was performed on the same diameter mandrel to obtain an effective range of the reel diameter. With ABAQUS software the bending simulation model is established. The same diameter mandrel winding inside the scroll of different diameter mandrel of the equivalent stress is obtained by numerical calculation of finite element software. The results show that the maximum equivalent stress is the most lateral concentration distribution in a composite mandrel, axial tensile stress or compressive stress decreases with the increases of the scroll radius. The research results provide a theoretical basis for winding test of carbon fiber reinforced thermoplastic composite core.
Key words:  overhead line conductors    composite core    thermoplastic    winding test
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TM 244.2  
作者简介:  曾伟,女,工程师,主要从事架空导线设计及研发工作,上海电缆研究所有限公司。zengwei@secri.com
引用本文:    
曾伟. 架空导线用热塑性复合芯棒卷绕试验及仿真[J]. 材料导报, 2019, 33(z1): 94-97.
ZENG Wei. Winding Test and Simulation of Thermoplastic Composite Core for Overhead Conductor. Materials Reports, 2019, 33(z1): 94-97.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/94
1 史志远, 温景林, 白光润. 轻合金加工技术,1996(8),5.
2 梁旭明, 余军, 尤传永. 电网技术,2006(19),1.
3 姜文东, 张勇. 华东电力,2009,37(3),418.
4 蔡云财, 郭建, 王楚淇, 等.农业科技与装备,2013,9(9),49.
5 张春雷, 胡平, 何凤生. 南方电网技术,2012,6(2),104.
6 万建成, 刘晨, 江明, 等. 南方电网技术,2018,12(1),21.
7 曾伟.电线电缆,2018,6(3),13.
8 中国电器工业协会. 架空导线用纤维增强树脂基复合材料芯棒: GB/T 29324-2012.中国标准出版社,2012.
[1] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[2] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[3] 卢宇晗, 黄元波, 杨晓琴, 徐开蒙, 刘灿, 张全, 王继大, 郑志锋. 核桃壳液化物合成高邻位热塑性酚醛树脂[J]. 材料导报, 2018, 32(18): 3244-3248.
[4] 唐兴昌, 张文娟, 王向飞, 张志坚. 1 200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875.
[5] 卢成壮,李静媛,高智君,张泰然,陈雨来,王一德. 0Cr25Ni7Mo4N双相不锈钢高温热塑性及组织演变[J]. 《材料导报》期刊社, 2018, 32(10): 1639-1644.
[6] 常艺, 裴久阳, 周苏生, 陈名海, 刘宁, 李清文. 功能化碳纳米管改性热塑性复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 84-90.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed