Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23050048-10    https://doi.org/10.11896/cldb.23050048
  无机非金属及其复合材料 |
粗集料接触配位参数影响下沥青混合料的抗断裂特性研究
牛冬瑜1,*, 黄山1, 师伟博2, 谢希望3, 汪严1, 高仰明4
1 长安大学材料科学与工程学院,西安 710061
2 浙江省交通运输科学研究院道路工程研究所,杭州 310012
3 江苏苏博特新材料股份有限公司高性能土木工程材料国家重点实验室,南京 211103
4 利物浦约翰摩尔大学土木工程与建筑环境学院,英国 利物浦 Byrom Street, L3 3AF
Fracture Resistance of Asphalt Mixtures Under the Effect of the Coordination Number of Particles Contact Forces of Coarse Aggregates
NIU Dongyu1,*, HUANG Shan1, SHI Weibo2, XIE Xiwang3, WANG Yan1, GAO Yangming4
1 School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
2 Zhejiang Scientific Research Institute of Transport, Road Engineering Research Institute, Hangzhou 310012,China
3 Jiangsu Sobute New Materials Co., Ltd., State Key Laboratory of High-Performance Civil Engineering Materials, Nanjing 211103, China
4 School of Civil Engineering and Built Environment, Liverpool John Moores University, Byrom Street, L3 3AF, Liverpool, United Kingdom
下载:  全 文 ( PDF ) ( 18058KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究细观骨架优化对沥青混合料抗断裂性能的影响,研究了细观尺度下主骨架粗集料的接触特性与沥青混合料抗断裂性能的关系。基于颗粒堆积理论与细观接触力学,修正了表征主骨架结构细观接触特征的粗集料接触配位参数(Cnpcf),并设计了九种具有不同细观结构的级配。基于半圆弯试验(SCB)确定了合理的抗断裂性能评价指标,采用Python编程实现SCB试验后试件表面的数字图像协同处理,在细观尺度探究了不同Cnpcf下断裂扩展的规律。最后,根据灰熵理论,综合分析了不同结构特征参数与断裂性能的灰关联性。结果表明,沥青混合料的强度、能量指标,随着Cnpcf增加呈现先增后减的趋势。当Cnpcf=7.35时,沥青混合料的抗断裂性能(σm=1.18 MPa,Gf=3 003.4 J/m2,CRI=509.1)更优。随着加载位移的增加,裂缝面积和长度呈线性扩展,但在不同Cnpcf下显著开裂时的加载位移并不一致。控制Cnpcf于7.2~7.6之间,将能有效增强混合料抵抗断裂扩张的能力。不同温度条件下Cnpcf在能量和强度层面与抗断裂性能均具有强灰关联,这为在细观结构尺度优化沥青混合料性能提供了新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛冬瑜
黄山
师伟博
谢希望
汪严
高仰明
关键词:  道路工程  沥青混合料  抗断裂性能  细观结构优化  颗粒堆积理论  数字图像处理    
Abstract: To investigate the impact of mesoscale skeleton optimization on the fracture resistance of asphalt mixes, the relationship between the contact behaviors of coarse aggregates on the dominant skeleton and the fracture resistance of asphalt mixes at the mesoscale was studied. Based on the particle accumulation theory and mesoscale contact mechanics, the coordination number of particles contact force (Cnpcf) for coarse aggregates was modified to characterize the mesoscale contact characteristics in the dominant structure. And nine kinds of asphalt mixes with diffrent meso-structural garadations were designed. Appropriate fracture resistance evaluation criteria were identified based on the semicircular bending test (SCB). Co-processing for digital images on specimen surfaces after the SCB test was implemented by Python programming, and the regularity of fracture extension with varied Cnpcf was explored at the mesoscale. Finally, the gray correlation between various structure characteristic parameters and fracture performance was comprehensively analyzed according to the gray relational analysis and entropy theory. The results indicated that the strength and energy indicators of the asphalt mixture exhibited the trend of increasing and then decreasing with the increase of Cnpcf. When Cnpcf eaquals to 7.35, the asphalt mixture has better fracture resistance (σm=1.18 MPa, Gf=3 003.4 J/m2, CRI=509.1). Moreover, the crack area and length expands linearly with the increasing of loading displacement, but the loading displacement was not consistent for notably appeared cracks appeared under varying Cnpcf. Thus, the capacity of the mix resisting fracture dilation will be enhanced by restricting the Cnpcf between 7.2 and 7.6. Significant gray correlations of Cnpcf with fracture resistance on both energy and strength levels were observed under distinct temperature conditions, which provides new perspectives for optimizing asphalt mixture performance at mesoscales.
Key words:  road engineering    asphalt mixture    fracture resistance    mesoscale structure optimization    particle accumulation theory    digital image processing
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  U414  
基金资助: 中央高校基本科研业务费专项资金资助(300102314902);陕西省自然科学基础研究计划资助项目(2024JC-YBMS-374);国家自然科学基金(51608045)
通讯作者:  * 牛冬瑜,长安大学材料科学与工程学院副教授,国际博士研究生导师,硕士研究生导师。2007年长安大学公路学院本科毕业,2011年长安大学道路与铁道工程专业硕士毕业,2015年长安大学道路材料科学与工程专业博士毕业。目前主要从事沥青路面结构与材料、道路材料细观数值模拟、可持续生态型道面材料、特殊地区高性能道路养护材料等方面的研究工作。先后主持国家自然科学基金青年基金等10项国家级、省部级科研课题。发表SCI/EI论文30余篇,合作著作1本,授权国家专利10余项。niudongyu_1984@chd.edu.cn   
作者简介:  黄山,2022年7月于长安大学获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在牛冬瑜副教授的指导下进行研究。目前主要研究领域为沥青路面结构与材料、道路材料细观数值模拟。
引用本文:    
牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
NIU Dongyu, HUANG Shan, SHI Weibo, XIE Xiwang, WANG Yan, GAO Yangming. Fracture Resistance of Asphalt Mixtures Under the Effect of the Coordination Number of Particles Contact Forces of Coarse Aggregates. Materials Reports, 2024, 38(23): 23050048-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050048  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23050048
1 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2020, 33(10), 1 (in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2020, 33(10), 1.
2 Yao Z, Huang X, Tao M, et al. Journal of Southeast University (English Edition), 2017, 33(3), 293.
3 Zhang R H, Huang J D, Zheng W. Construction and Building Materials, 2022, 350, 128693.
4 Zhang J X, Zhang J, Cao D D. Journal of Municipal Technology, 2021, 39(11), 17 (in Chinese).
张金喜, 张嘉, 曹丹丹. 市政技术, 2021, 39(11), 17.
5 Xie T. Study on crack propagation behaviour of asphalt mixtures based on CT real-time observation. Ph. D. Thesis, Southwest Jiaotong University, China, 2006 (in Chinese).
谢涛. 基于CT实时观测的沥青混合料裂纹扩展行为研究. 博士学位论文, 西南交通大学, 2006.
6 Shi L W, Wang D Y, Jin C N, et al. Measurement, 2020, 163 (4), 107948.
7 Shi L W, Wang D Y, Xiao X, et al. Construction and Building Mate-rials, 2020, 232, 117263.
8 Kim S, Roque R, Guarin A, et al. Association Asphalt Paving Technologists: ST PAUL, 2006.
9 Guarin A. Interstitial component characterization to evaluate asphalt mixture performance. Ph. D. Thesis, University of Florida, USA, 2009.
10 Lira B, Jelagin D, Birgisson B. International Journal of Pavement Engineering, 2015, 16(2), 144.
11 Lira B, Jelagin D, Birgisson B. Materials and Structures, 2012, 46(8), 1401.
12 Yideti T F, Birgisson B, Jelagin D, et al. International Journal of Pavement Engineering, 2013, 15(8), 689.
13 Niu D Y. Study on performance of asphalt mortar and framework structured asphalt mixture based on meso-mechanics. Ph. D. Thesis, Chang'an University, China, 2015 (in Chinese).
牛冬瑜. 基于细观力学的沥青砂浆及骨架结构沥青混合料性能研究. 博士学位论文, 长安大学, 2015.
14 Niu D Y, Xie X W, Niu Y H, et al. China Journal of Highway and Transport, 2020, 33(10), 201 (in Chinese).
牛冬瑜, 谢希望, 牛艳辉, 等. 中国公路学报, 2020, 33(10), 201.
15 Niu D Y, Xie X W, Dou H, et al. Journal of Dalian University of Technology, 2021, 61(3), 265 (in Chinese).
牛冬瑜, 谢希望, 窦晖, 等. 大连理工大学学报, 2021, 61(3), 265.
16 Xing C. Mesostructure and stress straintransfer mechanism of skeleton filling system of asphalt mixture. Ph. D. Thesis, Harbin Institute of Technology, China, 2018 (in Chinese).
邢超. 沥青混合料骨架填充体系细观结构及应力应变传递机制研究. 博士学位论文, 哈尔滨工业大学, 2018.
17 Larrard F D. Information Storage & Retrieval, 2017, 4(2), 113.
18 Hao P W, Xu J Z, Xiao M, et al. Journal of Chang'an University(Na-tural Science Edition), 2008(1), 21 (in Chinese).
郝培文, 徐金枝, 肖曼,等. 长安大学学报(自然科学版), 2008(1), 21.
19 Wang H, Shi L, Deng Q, et al. Journal of Changsha University of Science & Technology (Natural Science), 2017, 14(4), 18(in Chinese).
王辉, 石磊, 邓乔, 等. 长沙理工大学学报(自然科学版), 2017, 14(4), 18.
20 Zhang Y Q, Luo X, Onifade I, et al. Construction and Building Materials, 2019, 205, 499.
21 Khasawneh M A, Sawalha A A, Aljarrah M T, et al. Case Studies in Construction Materials, 2023, 18, e01725.
22 Li Y Y, Chen J, Wang S, et al. Journal of Changsha University of Science & Technology (Natural Science), 2022, 19(1), 1 (in Chinese).
李友云, 陈佳, 王硕, 等. 长沙理工大学学报(自然科学版), 2022, 19(1), 1.
23 Cui X Z, Huang D, Liu L, et al. Journal of Shandong University(Engineering Science), 2016, 46(5), 68 (in Chinese).
崔新壮, 黄丹, 刘磊, 等. 山东大学学报(工学版), 2016, 46(5), 68.
24 Chen F, Zhang L Y, Feng J L, et al. Materials Reports, 2021, 35(2), 127 (in Chinese).
陈飞, 张林艳, 封基良, 等. 材料导报, 2021, 35(2), 127.
25 Meng Y J, Kong W K, Gou C L, et al. Journal of Road Engineering, 2023, 3(1), 87.
26 Xie J, Luo W H. Journal of Changsha University of Science & Technology (Natural Science), 2016, 13(1), 7 (in Chinese).
谢军, 罗文浩. 长沙理工大学学报(自然科学版), 2016, 13(1), 7.
27 Liu Y, Zhang X N, Chi F X. Journal of China & Foreign Highway, 2008(3), 190 (in Chinese).
刘宇, 张肖宁, 迟凤霞. 中外公路, 2008(3), 190.
28 Wagnoner M P, Buttlar W G, Paulino G H. Experimental Mechanics, 2005, 45(3), 270.
29 Jiang X L, Yang S, Li T Y. Journal of Railway Science and Engineering, 2022, 19(2), 428 (in Chinese).
姜鑫龙, 杨树, 李庭予. 铁道科学与工程学报, 2022, 19(2), 428.
30 Feng D C, Cui S T, Yi J Y, et al. China Journal of Highway and Transport, 2020, 33(7), 50 (in Chinese).
冯德成, 崔世彤, 易军艳, 等. 中国公路学报, 2020, 33(7), 50.
31 Luo P F. Research on the asphalt mixture crack test methods and evaluation indexes based on SCB. Master's Thesis, Chang'an University, China, 2017 (in Chinese).
罗培峰. 基于半圆弯曲试验的沥青混合料断裂试验方法和评价指标研究. 硕士学位论文, 长安大学, 2017.
32 Liu Y. Research on dynamic response and fracture performance of asphalt mixture based on semi-circular bednding test. Ph. D. Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
刘宇. 基于半圆弯曲试验的沥青混合料动态响应及断裂性能研究. 博士学位论文, 哈尔滨工业大学, 2009.
33 Scott G D. Nature, 1960, 188(4757), 908.
34 Bernal J D, Mason J. Nature, 1960, 188(4754), 910.
35 Graton L C, Fraser H J. Journal of Geology, 1935, 43(8), 785.
36 Cooke A J, Rowe R K. Journal of Environmental Engineering, 1999, 125(2), 126.
37 Guarin A, Roque R, Kim S, et al. The International Journal of Pavement engineering, 2013.
38 Chun S, Kim K, Park B, et al. Ksce Journal of Civil Engineering, 2018, 22(1), 125.
39 Zhu Y F, Dave E V, Rahbar-Rastegar R, et al. Road Materials and Pavement Design, 2017, 86, 629.
40 Kaseer F, Yin F, Arámbula-Mercado E, et al. Construction and Building Materials, 2018, 167, 286.
41 Xu Y Q, Yin J, Zhuo Z X. Zhongnan Road Engineering, 2002 (1), 75 (in Chinese).
徐芸青, 尹娟, 卓知学. 中南公路工程, 2002 (1), 75.
42 Hou W. Journal of Chongqing Jiaotong University (Natural Science Edition), 2010, 29(6), 904 (in Chinese).
侯伟. 重庆交通大学学报(自然科学版), 2010, 29(6), 904.
43 Vavrik W R, Pine W J, Huber G, et al. Journal of the Association of Asphalt Paving Technologists, 2001, 70, 132.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[6] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[7] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[8] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[9] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[10] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[11] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[12] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[13] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed