Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22080162-5    https://doi.org/10.11896/cldb.22080162
  金属与金属基复合材料 |
激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能
舒林森1,2,*, 张粲东1,3, 于鹤龙4, 张朝铭1
1 陕西理工大学机械工程学院,陕西 汉中 723001
2 陕西省工业自动化重点实验室,陕西 汉中 723001
3 绵阳城市学院现代技术学院,四川 绵阳 621000
4 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Structural Characteristics and Mechanical Properties of Laser-fused In-situ Ti-C-B-Al Composite Coatings
SHU Linsen1,2,*, ZHANG Candong1,3, YU Helong4, ZHANG Chaoming1
1 School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
2 Shaanxi Key Laboratory of Industrial Automation, Hanzhong 723001, Shaanxi, China
3 School of Modern Technology, Mianyang City College, Mianyang 621000, Sichuan, China
4 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 19312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钛粉、铝粉和碳化硼粉末为原料,采用同步同轴激光熔覆系统在Ti6Al4V钛合金表面制备含原位自生TiC、TiB以及TiAl金属间化合物增强钛基的Ti-C-B-Al复合涂层,研究了复合涂层的显微组织、物相构成、显微硬度和微纳米力学性能。结果表明,三种粉末在高能激光束的作用下充分反应并生成了TiC、TiB以及TiAl金属间化合物增强相。复合涂层表面光滑,涂层内部无气孔及裂纹,与基体间形成了良好的冶金结合,增强相在涂层内分布均匀,相比于基体,熔覆涂层具有较优的力学性能。涂层硬度在460HV0.3~510HV0.3之间,同时涂层的纳米力学性能与显微硬度具有较好的对应关系,其中当m(Ti)∶m(Al)∶m(B4C)=84∶12∶4时,制得的涂层具有较优的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒林森
张粲东
于鹤龙
张朝铭
关键词:  支撑膜原位合成  钛基复合涂层  激光熔覆  力学性能    
Abstract: The Ti-C-B-Al composite coatings containing in-situ autogenous TiC, TiB, and TiAl intermetallic compounds reinforced with titanium base were prepared on the surface of Ti6Al4V substrate using titanium powder, aluminum powder, and boron carbide powder as raw materials, and the microstructure, phase composition, microhardness and nanoindentation properties of the composite coatings were investigated using scanning electron microscopy, X-ray diffractometer, microhardness tester, and nanoindentation tester. The results showed that the three powders reacted adequately with the high-energy laser beam to produce TiC, TiB, and TiAl intermetallic compound reinforced phases. The surface of the compo-site coating is smooth, with no pores or cracks inside the coating, forming an excellent metallurgical bond with the substrate, the reinforcement phase is evenly distributed in the coating, and the cladding coating has better mechanical properties than the matrix. The hardness of the coating ranged from 460HV0.3 to 510HV0.3. At the same time, there is a good relationship between the nano-mechanical properties and microhardness. When the m(Ti)∶m(Al)∶m(B4C)=84∶12∶4, the prepared coating has better mechanical properties.
Key words:  support membrane in-situ synthesis    titanium-based composite coating    laser melting    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52075544);陕西省教育厅专项科研计划项目(21JK0562);陕西省工业自动化重点实验室开放课题研究基金 (SLGPT2019KF01-16);国防科技重点实验室基金(JCKY61420052022)
通讯作者:  *舒林森,陕西理工大学机械工程学院副教授、硕士研究生导师。2007年北华大学机械设计制造及其自动化专业本科毕业,2010年四川轻化工大学机械设计及理论专业硕士毕业,2014年重庆大学机械制造及其自动化专业博士毕业后到陕西理工大学工作至今。目前主要从事激光熔覆、力学强度、机械结构有限元等方面的研究工作。发表论文20余篇,包括《机械工程学报》《中国机械工程》《中国激光》、Chinese Journal of Mechanical Engineering、Coating、Materials Research Express等。shulinsen19@163.com   
引用本文:    
舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
SHU Linsen, ZHANG Candong, YU Helong, ZHANG Chaoming. Structural Characteristics and Mechanical Properties of Laser-fused In-situ Ti-C-B-Al Composite Coatings. Materials Reports, 2024, 38(2): 22080162-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080162  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22080162
1 Tan J H, Sun R L, Niu W, et al. Materials Reports, 2020, 34(15), 15132 (in Chinese).
谭金花, 孙荣禄, 牛伟, 等. 材料导报, 2020, 34(15), 15132.
2 Fei W, Chuan Z C, Hui J Y. Materials & Design, 2014, 58, 412.
3 Tian Y S, Chen C Z, Li S T, et al. Applied Surface Science, 2005, 242, 177.
4 Li C Z, Fu B G, Liu J H, et al. Materials Reports, 2018, 32(S1), 410 (in Chinese).
李朝志, 付彬国, 刘金海, 等. 材料导报, 2018, 32(S1), 410.
5 Wu Y, Wang A H, Zhang Z, et al. Surface and Coatings Technology, 2014, 258, 711.
6 Yang J, Xiao S, Zhang Q K, et al. Vacuum, 2020, 172, 109.
7 El-Rahman A A M. Materials Chemistry & Physics, 2015, 149-150, 179.
8 Zhou H X, Li C X, Li C J. China Surface Engineering, 2020, 33(2), 7 (in Chinese).
周红霞, 李成新, 李长久. 中国表面工程, 2020, 33(2), 7.
9 Gma B, Nc C, Mpab D, et al. Colloids and Surfaces B: Biointerfaces, 2019, 180, 245.
10 Zhang Z Q, Yang F, Zhang T G, et al. Surface Technology, 2020, 49(10), 138 (in Chinese).
张志强, 杨凡, 张天刚, 等. 表面技术, 2020, 49(10), 138.
11 Liu X B, Wang M, Qiao S J, et al. Tribology, 2018, 38(3), 283 (in Chinese).
刘秀波, 王勉, 乔世杰, 等. 摩擦学学报, 2018, 38(3), 283.
12 Janicki D. Surface and Coatings Technology, 2020, 406(8), 126634.
13 Pan Y, Li W, Lu X, et al. Materials Characterization, 2020, 170, 110633.
14 Zhang M Q, Yu H L, Wang H M, et al. Journal of Materials Enginee-ring, 2020, 48(7), 111 (in Chinese).
张梦清, 于鹤龙, 王红美, 等. 材料工程, 2020, 48(7), 111.
15 Cui H W, Cui X F, Wang H D, et al. Rare Metal Materials and Engineering, 2014, 38(6), 999 (in Chinese).
崔华威, 崔秀芳, 王海斗, 等. 稀有金属, 2014, 38(6), 999.
16 Shi B, Huang S, Zhu P, et al. Materials Letters, 2020, 276, 128093
17 Kanyane L R, Adesina O S, Popoola A, et al. Procedia Manufacturing, 2019, 35, 1267.
18 Feng Y, Feng K, Yao C, et al. Metallurgical and Materials Transactions A, 2019, 50, 3414.
19 Sun X, Li W, Huang J, et al. Applied Surface Science, 2020, 508, 145264. 1.
20 Mendes M, Agreda C G, Bressiani A, et al. Materials Science & Engineering C: Materials for Biological Applications, 2016, 63, 671.
21 Cui X, Zhang S, Zhang C H, et al. Journal of Materials Engineering, 2020, 48(9), 13 (in Chinese).
崔雪, 张松, 张春华, 等. 材料工程, 2020, 48(9), 13.
[1] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[2] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[3] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[4] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[5] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[6] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[7] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[8] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[9] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[10] 刘亚豪, 王源升, 杨雪, 黄威, 李科, 王轩. 自修复聚氨酯材料的研究进展[J]. 材料导报, 2024, 38(1): 22050280-10.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[13] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[14] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[15] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed