Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22080162-5    https://doi.org/10.11896/cldb.22080162
  金属与金属基复合材料 |
激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能
舒林森1,2,*, 张粲东1,3, 于鹤龙4, 张朝铭1
1 陕西理工大学机械工程学院,陕西 汉中 723001
2 陕西省工业自动化重点实验室,陕西 汉中 723001
3 绵阳城市学院现代技术学院,四川 绵阳 621000
4 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
Structural Characteristics and Mechanical Properties of Laser-fused In-situ Ti-C-B-Al Composite Coatings
SHU Linsen1,2,*, ZHANG Candong1,3, YU Helong4, ZHANG Chaoming1
1 School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
2 Shaanxi Key Laboratory of Industrial Automation, Hanzhong 723001, Shaanxi, China
3 School of Modern Technology, Mianyang City College, Mianyang 621000, Sichuan, China
4 National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
下载:  全 文 ( PDF ) ( 19312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钛粉、铝粉和碳化硼粉末为原料,采用同步同轴激光熔覆系统在Ti6Al4V钛合金表面制备含原位自生TiC、TiB以及TiAl金属间化合物增强钛基的Ti-C-B-Al复合涂层,研究了复合涂层的显微组织、物相构成、显微硬度和微纳米力学性能。结果表明,三种粉末在高能激光束的作用下充分反应并生成了TiC、TiB以及TiAl金属间化合物增强相。复合涂层表面光滑,涂层内部无气孔及裂纹,与基体间形成了良好的冶金结合,增强相在涂层内分布均匀,相比于基体,熔覆涂层具有较优的力学性能。涂层硬度在460HV0.3~510HV0.3之间,同时涂层的纳米力学性能与显微硬度具有较好的对应关系,其中当m(Ti)∶m(Al)∶m(B4C)=84∶12∶4时,制得的涂层具有较优的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
舒林森
张粲东
于鹤龙
张朝铭
关键词:  支撑膜原位合成  钛基复合涂层  激光熔覆  力学性能    
Abstract: The Ti-C-B-Al composite coatings containing in-situ autogenous TiC, TiB, and TiAl intermetallic compounds reinforced with titanium base were prepared on the surface of Ti6Al4V substrate using titanium powder, aluminum powder, and boron carbide powder as raw materials, and the microstructure, phase composition, microhardness and nanoindentation properties of the composite coatings were investigated using scanning electron microscopy, X-ray diffractometer, microhardness tester, and nanoindentation tester. The results showed that the three powders reacted adequately with the high-energy laser beam to produce TiC, TiB, and TiAl intermetallic compound reinforced phases. The surface of the compo-site coating is smooth, with no pores or cracks inside the coating, forming an excellent metallurgical bond with the substrate, the reinforcement phase is evenly distributed in the coating, and the cladding coating has better mechanical properties than the matrix. The hardness of the coating ranged from 460HV0.3 to 510HV0.3. At the same time, there is a good relationship between the nano-mechanical properties and microhardness. When the m(Ti)∶m(Al)∶m(B4C)=84∶12∶4, the prepared coating has better mechanical properties.
Key words:  support membrane in-situ synthesis    titanium-based composite coating    laser melting    mechanical property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG142  
基金资助: 国家自然科学基金(52075544);陕西省教育厅专项科研计划项目(21JK0562);陕西省工业自动化重点实验室开放课题研究基金 (SLGPT2019KF01-16);国防科技重点实验室基金(JCKY61420052022)
通讯作者:  *舒林森,陕西理工大学机械工程学院副教授、硕士研究生导师。2007年北华大学机械设计制造及其自动化专业本科毕业,2010年四川轻化工大学机械设计及理论专业硕士毕业,2014年重庆大学机械制造及其自动化专业博士毕业后到陕西理工大学工作至今。目前主要从事激光熔覆、力学强度、机械结构有限元等方面的研究工作。发表论文20余篇,包括《机械工程学报》《中国机械工程》《中国激光》、Chinese Journal of Mechanical Engineering、Coating、Materials Research Express等。shulinsen19@163.com   
引用本文:    
舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
SHU Linsen, ZHANG Candong, YU Helong, ZHANG Chaoming. Structural Characteristics and Mechanical Properties of Laser-fused In-situ Ti-C-B-Al Composite Coatings. Materials Reports, 2024, 38(2): 22080162-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22080162  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22080162
1 Tan J H, Sun R L, Niu W, et al. Materials Reports, 2020, 34(15), 15132 (in Chinese).
谭金花, 孙荣禄, 牛伟, 等. 材料导报, 2020, 34(15), 15132.
2 Fei W, Chuan Z C, Hui J Y. Materials & Design, 2014, 58, 412.
3 Tian Y S, Chen C Z, Li S T, et al. Applied Surface Science, 2005, 242, 177.
4 Li C Z, Fu B G, Liu J H, et al. Materials Reports, 2018, 32(S1), 410 (in Chinese).
李朝志, 付彬国, 刘金海, 等. 材料导报, 2018, 32(S1), 410.
5 Wu Y, Wang A H, Zhang Z, et al. Surface and Coatings Technology, 2014, 258, 711.
6 Yang J, Xiao S, Zhang Q K, et al. Vacuum, 2020, 172, 109.
7 El-Rahman A A M. Materials Chemistry & Physics, 2015, 149-150, 179.
8 Zhou H X, Li C X, Li C J. China Surface Engineering, 2020, 33(2), 7 (in Chinese).
周红霞, 李成新, 李长久. 中国表面工程, 2020, 33(2), 7.
9 Gma B, Nc C, Mpab D, et al. Colloids and Surfaces B: Biointerfaces, 2019, 180, 245.
10 Zhang Z Q, Yang F, Zhang T G, et al. Surface Technology, 2020, 49(10), 138 (in Chinese).
张志强, 杨凡, 张天刚, 等. 表面技术, 2020, 49(10), 138.
11 Liu X B, Wang M, Qiao S J, et al. Tribology, 2018, 38(3), 283 (in Chinese).
刘秀波, 王勉, 乔世杰, 等. 摩擦学学报, 2018, 38(3), 283.
12 Janicki D. Surface and Coatings Technology, 2020, 406(8), 126634.
13 Pan Y, Li W, Lu X, et al. Materials Characterization, 2020, 170, 110633.
14 Zhang M Q, Yu H L, Wang H M, et al. Journal of Materials Enginee-ring, 2020, 48(7), 111 (in Chinese).
张梦清, 于鹤龙, 王红美, 等. 材料工程, 2020, 48(7), 111.
15 Cui H W, Cui X F, Wang H D, et al. Rare Metal Materials and Engineering, 2014, 38(6), 999 (in Chinese).
崔华威, 崔秀芳, 王海斗, 等. 稀有金属, 2014, 38(6), 999.
16 Shi B, Huang S, Zhu P, et al. Materials Letters, 2020, 276, 128093
17 Kanyane L R, Adesina O S, Popoola A, et al. Procedia Manufacturing, 2019, 35, 1267.
18 Feng Y, Feng K, Yao C, et al. Metallurgical and Materials Transactions A, 2019, 50, 3414.
19 Sun X, Li W, Huang J, et al. Applied Surface Science, 2020, 508, 145264. 1.
20 Mendes M, Agreda C G, Bressiani A, et al. Materials Science & Engineering C: Materials for Biological Applications, 2016, 63, 671.
21 Cui X, Zhang S, Zhang C H, et al. Journal of Materials Engineering, 2020, 48(9), 13 (in Chinese).
崔雪, 张松, 张春华, 等. 材料工程, 2020, 48(9), 13.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[5] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[13] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[14] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[15] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed