Please wait a minute...
材料导报  2024, Vol. 38 Issue (1): 22060231-8    https://doi.org/10.11896/cldb.22060231
  无机非金属及其复合材料 |
聚酯纤维泡沫混凝土力学性能及孔结构研究
王述红*, 贡藩, 尹宏, 修占国
东北大学资源与土木工程学院,沈阳 110819
Study on Mechanical Properties and Pore Structure of Foamed Concrete Reinforced with Polyester Fiber
WANG Shuhong*, GONG Fan, YIN Hong, XIU Zhanguo
School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 14779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维的掺加可有效地改善泡沫混凝土抗压强度低、脆性特征显著的缺陷,增强其工程适用性。本工作针对聚酯纤维对泡沫混凝土力学性能的改善开展试验研究,选定密度等级为700 kg/m3的泡沫混凝土,考虑不同纤维体积掺量(0.1%、0.2%、0.3%和0.4%)对其抗压强度、抗折强度、劈裂抗拉强度以及延性的影响。结果表明:纤维掺量为0.1%时,材料表现出较优的抗压和劈裂抗拉性能,28 d强度分别增加了86.4%和91.3%;纤维掺量为0.2%时,材料表现出较优的抗折性能,28 d抗折强度提升了39.1%。试样破坏形态和应力-应变曲线表明,聚酯纤维可有效地提升泡沫混凝土的延性。最后,运用图像分析处理法分别获得了五组试件的孔结构参数,从细观孔结构的角度讨论了聚酯纤维对泡沫混凝土抗压强度的影响机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王述红
贡藩
尹宏
修占国
关键词:  泡沫混凝土  聚酯纤维  力学性能  孔结构  图像处理    
Abstract: The addition of fiber can effectively improve the defects of low compressive strength and brittleness of foamed concrete and enhance its engineering applicability. A series of experiments were carried out to study the improvement of mechanical properties of foamed concrete by pol-yester fiber. The foamed concrete with density class 700 kg/m3 was selected. The influence of different fiber content (0.1%, 0.2%, 0.3% and 0.4%) on compressive strength, splitting tensile strength, flexural strength and ductility of materials was considered. The results showed that when the fiber content was 0.1%, the material showed better compressive and splitting tensile properties. The 28 day strength increased by 86.4% and 91.3% respectively. When the fiber content was 0.2%, the material showed better flexural properties and the flexural strength increased by 39.1% in 28 days. The failure modes and stress-strain curves of the specimens indicate that polyester fiber can effectively enhance the ductility of foamed concrete. Finally, the pore structure parameter of five groups of specimens were obtained by image analysis and proces-sing method. The mechanism of the effect of polyester fiber on the mechanical properties of foamed concrete was discussed from the perspective of pore structure.
Key words:  foamed concrete    polyester fiber    mechanical property    pore structure    image processing
发布日期:  2024-01-16
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1602232);中央高校基本科研业务专项资金(N2301005;N2301006)
通讯作者:  王述红,东北大学资源与土木工程学院教授、博士研究生导师。2000年获得东北大学结构工程专业博士学位后留校任教,主要从事岩土工程相关的教学和科研工作。发表学术论文200余篇,包括Construction and Building Materials、《工程力学》等。shwangneu@126.com   
引用本文:    
王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
WANG Shuhong, GONG Fan, YIN Hong, XIU Zhanguo. Study on Mechanical Properties and Pore Structure of Foamed Concrete Reinforced with Polyester Fiber. Materials Reports, 2024, 38(1): 22060231-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060231  或          https://www.mater-rep.com/CN/Y2024/V38/I1/22060231
1 Ministry of Housing and Urban Rural Development of the People’s Republic of China. Technical specification for application of foamed concrete: JG/T 341-2014, Standard Press, China, 2014(in Chinese).
中华人民共和国住房和城乡建设部. 泡沫混凝土应用技术规程: JG/T 341-2014, 标准出版社, 2014.
2 Fu Y B, Wang X L, Wang L X, et al. Advances in Materials Science and Engineering, 2020, 2020(4), 1.
3 Wu K, Shao Z, Qin S, et al. Tunnelling and Underground Space Technology, 2021, 115(4), 103815.
4 Chen W Z, Tian H M, Yang F D, et al. Rock and Soil Mechanics, 2011, 32(9), 2577 (in Chinese).
陈卫忠, 田洪铭, 杨阜东, 等. 岩土力学, 2011, 32(9), 2577.
5 Wang H. Journal of Central South University, 2012, 19, 3305.
6 Wu G, Chen W, Tan X, et al. International Journal of Geomechanics, 2020, 20(2), 04019173.
7 Gencel O, Bayraktar O Y, Kaplan G, et al. Construction and Building Materials, 2021, 294, 123607.
8 Castillo-Lara J F, Flores-Johnson E A, Valadez-Gonzalez A, et al. Materials, 2020, 13(14), 3060.
9 Madhwani H, Sathyan D, Mini K M. Materials Today: Proceedings, 2020, 46(10), 4782.
10 Pan X B. Research on the relationship between micro-structure and macro-performance of high performance foam concrete with fiber. Master’s Thesis, South China University of Technology, China, 2020 (in Chinese).
潘晓冰. 掺加纤维的高性能泡沫混凝土细观结构与宏观性能的关系研究. 硕士学位论文, 华南理工大学, 2020.
11 Gencel O, Kazmi S M, Munir M J, et al. Construction and Building Materials, 2021, 306, 124887.
12 Wang W B, Zhao W H, Su Q, et, al. Railway Engineering, 2017(2), 146 (in Chinese).
王武斌, 赵文辉, 苏谦, 等. 铁道建筑, 2017(2), 146.
13 Chen W. Study on road performance of polyester fiber asphalt concrete. Master’s Thesis, Chongqing Jiaotong University, China, 2019 (in Chinese).
陈伟. 聚酯纤维沥青混凝土路用性能研究. 硕士学位论文, 重庆交通大学, 2019.
14 Thomas L M, Moosvi S A. Materials Today: Proceedings, 2020, 32, 632.
15 Fraternali D, Ciancia V, Chechile R, et al. Composite Structures, 2011, 93(9), 2368.
16 Zhang J S. Foam concrete, Harbin Institute of Technology Press, China, 2016 (in Chinese).
张巨松. 泡沫混凝土, 哈尔滨工业大学出版社, 2016.
17 Guo Y Z, Chen X D, Chen B, et al. Construction and Building Materials, 2020, 273, 121773.
18 Nambiar E, Ramamurthy K. Cement & Concrete Research, 2007, 37(2), 221.
19 Mehta K, Monteiro P. Concrete:microstructure, properties, and materials, China Architecture & Building Press, China, 2016 (in Chinese).
库马·梅塔, 保罗·蒙特罗. 混凝土微观结构, 性能和材料, 中国建筑工业出版社, 2016.
20 Ministry of Housingand Urban Rural Development of the People’s Republic of China. Foamed concrete:JG/T 266-2011, Standard Press, China, 2011 (in Chinese).
中华人民共和国住房和城乡建设部. 泡沫混凝土:JG/T 266-2011, 标准出版社, 2011.
21 Yang T. Study on macroscopical properties and microstructure of foam concrete filled with glass fiber. Master’s Thesis, China Three Gorges University, China, 2020 (in Chinese).
杨挺. 外掺玻璃纤维泡沫混凝土宏观性能及其细观结构研究. 硕士学位论文, 三峡大学, 2020.
22 Zhao W H. Study on the structural performances and construction techno-logies of foamedconcrete subgrade of high-speed railway. Master’s Thesis, Southwest Jiaotong University, China, 2018 (in Chinese).
赵文辉. 高速铁路泡沫轻质混凝土路基结构性能及施工技术研究. 硕士学位论文, 西南交通大学, 2018.
23 Yang Z Q, Zhang Q Q, Liu J Z, et al. Journal of Hebei University of Technology, 2014, 43(6), 110 (in Chinese).
阳知乾, 张倩倩, 刘建忠, 等. 河北工业大学学报, 2014, 43(6), 110.
24 Shao X D, Li F Y, Qiu M H, et al. China Journal of Highway and Jransport, 2020, 33(4), 52 (in Chinese).
邵旭东, 李芳园, 邱明红, 等. 中国公路学报, 2020, 33(4), 52.
25 Li L, Wei Y J, Li Z L, et, al. Journal of the Chinese Ceramic Society, 2022, 50(8), 2213 (in Chinese).
李黎, 委玉杰, 李宗利, 等. 硅酸盐学报, 2022, 50(8), 2213.
26 Fan X C, Luo C. Concrete, 2021(6), 23 (in Chinese).
范小春, 罗聪. 混凝土, 2021(6), 23.
27 Su B Y. Mechanical properties and elastoplastic damage constitutive model for foamed concrete. Ph. D. Thesis, Taiyuan University of Technology, China, 2017 (in Chinese).
苏步云. 泡沫混凝土力学性能及其弹塑性损伤本构研究. 博士学位论文, 太原理工大学, 2017.
28 Chen G L, Li F L, Geng J Y, et al. Construction and Building Mate-rials, 2021, 294, 123572.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[6] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[7] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[8] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[9] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[10] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[11] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[12] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[13] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[14] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[15] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed