Abstract: The hydrogen bubble template method was used to successfully prepare a porous copper layer with a three-dimensional micro-nano structure. The effects of polyethylene glycol (PEG)and cetyl trimethyl ammonium bromide (CTAB)on the three-dimensional structure of porous copper (PCu)were studied. NaClO4 was embedded in the prepared PCu by solvent volatilization to form an embedded NaClO4 porous copper composite material. The results show that the porous copper layer adjusted by Cl-, PEG and CTAB has the smallest pore size and the most uniform distribution, and the overall porosity is about 94%. Its microscopic appearance shows that small holes are covered by large holes, and the hole wall is connected to the hole wall. 30 μL of 0.85 mol/L NaClO4 ethanol solution was embedded in PCu, and the sample was thermally analyzed by DSC. It was found that the decomposition temperature of NaClO4 dropped from 517 ℃ to 321 ℃, indicating that the three-dimensional micro-nanoporous copper exhibits excellent catalytic effect on the thermal decomposition of NaClO4, which can be used in the fields of propellants, explosives, and pyrotechnic materials.
1 Liu P S, Li T F, Fu C, et al. Journal of Functional Materials, 2001, 32(1), 12(in Chinese). 刘培生, 李铁藩, 傅超, 等. 功能材料, 2001, 32(1), 12. 2 Mi X. Preparation of porous materials and their applications in biomedical engineering and environment science. Master’s Thesis, Tianjin University, China, 2014(in Chinese). 米雪. 多孔材料构建及其在生物医学工程和环境领域中的应用. 硕士学位论文, 天津大学, 2014. 3 Gao H Y. Investigation on the porous FeAl intermetallics. Ph. D. Thesis, Central South University, China, 2009(in Chinese). 高海燕. Fe-Al金属间化合物多孔材料的研究. 博士学位论文, 中南大学, 2009. 4 Feng D. Tianjin Metallurgy, 2020, 225(1), 41(in Chinese). 冯丹. 天津冶金, 2020, 225(1), 41. 5 Wei G P, Zhang Y Q, Zheng Z, et al. New Chemical Materials, 2020(9), 38(in Chinese). 魏光平, 张玉琪, 郑洲, 等. 化工新型材料, 2020(9), 38. 6 Mei K K, Mehrnoush K, Siang P C, et al. International Journal of Hydrogen Energy, 2018, 43, 9334. 7 Himanshu S, Dheeraj P B, Yash P S, et al. Journal of Electroanalytical Chemistry, 2017, 785, 1. 8 Ma Y, Yang Q, Sun S D, et al. Rare Metal Materials and Engineering, 2019, 48(4), 1336(in Chinese). 马研, 杨卿, 孙少东, 等. 稀有金属材料与工程, 2019, 48(4), 1336. 9 Li N, Wang Q Z, Cui C X, et al. Journal of Functional Materials, 2011, 42(10), 1851(in Chinese) 李诺, 王清周, 崔春翔, 等. 功能材料, 2011, 42(10), 1851. 10 Wang Q Z, Li N, Wang Q, et al. Materials for Mechanical Engineering, 2011, 35(4), 53(in Chinese). 王清周, 李诺, 王倩, 等. 机械工程材料, 2011, 35(4), 53. 11 Li X W, Ruan Y, Wei B B. The Chinese Journal of Nonferrous Metals, 2019, 29(3), 517(in Chinese). 李星吾, 阮莹, 魏炳波. 中国有色金属学报, 2019, 29(3), 517. 12 Zhang Z D, Zhang F, Wang Y L, et al. Initiators & Pyrotechnics, 2015(2), 26(in Chinese). 张植栋, 张方, 王燕兰, 等. 火工品, 2015(2), 26. 13 Sun Y F, Niu Z J, Cen S Q, et al. Journal of Electrochemistry, 2006(2), 177(in Chinese). 孙雅峰, 牛振江, 岑树琼, 等. 电化学, 2006(2), 177. 14 Sun Y F. Electrodeposition of porous metal films on a template of hydrogen bubbles. Master’s Thesis, Zhejiang Normal University, China, 2006(in Chinese). 孙雅峰. 氢气泡模板法电沉积制备多孔金属薄膜. 硕士学位论文, 浙江师范大学, 2006. 15 Shin H C, Liu M. Chemistry of Materials, 2004, 16(25), 5460. 16 Shen Y, Xu J B, Li N, et al. Chemical Engineering Journal, 2017, 326, 1116. 17 Deng P, Ren H, Jiao Q. Ionics, 2020, 26, 1039. 18 Lei Y. Preparation and characteristic of NaClO4/porous copper composite energetic material. Master’s Thesis, Nanjing University of Science and Technology, China, 2010(in Chinese). 雷珏. 多孔铜复合高氯酸钠含能材料的制备与性能研究. 硕士学位论文, 南京理工大学, 2010. 19 Zhang F, Wang Y L, Fu D X. Initiators & Pyrotechnics, 2012(4), 25(in Chinese). 张方, 王燕兰, 付东晓. 火工品, 2012(4), 25. 20 Xiao J X, Zhao Z G. Principles of surfactant application, Chemical Industry Press, China, 2015, pp.89(in Chinese). 肖进新, 赵振国. 表面活性剂应用原理, 化学工业出版社, 2015, pp.89. 21 Nagy Z. Journal of the Electrochemical Society, 1995, 142(6), 56. 22 Kim J H, Kim R H, Kwon H S. Electrochemistry Communications, 2008, 10(8), 1148. 23 Zhang H B, Ye Y H, Shen R Q, et al. Journal of the Electrochemical Society, 2013, 160(10), 441. 24 Yang H, Hao X, Tang J, et al. Applied Surface Science, 2019, 494, 731. 25 Shimada S, Furuichi R. Thermochimica Acta, 1990, 163, 313.