Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 390-394    
  金属与金属基复合材料 |
冷轧对原位生长三维石墨烯/铜基复合材料性能的影响
于镇洋, 吕本元, 何威
天津工业大学机械工程学院,天津 300387
Effect of Cold Rolling on Properties of In-situ Growing Three-dimensional Graphene/Copper Matrix Composites
YU Zhenyang, LYU Benyuan, HE Wei
School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
下载:  全 文 ( PDF ) ( 5459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯增强铜基复合材料具有高强度和高导电性等优点,在新型高导铜基复合材料中很受关注。为了进一步解决外加石墨烯增强体的团聚问题以及改善其与基体之间的结合情况,本工作采用乙炔作为碳源在多孔铜基体上原位沉积生长大面积三维连续薄层石墨烯,并采用二次冷轧、退火的工艺最终得到综合性能优良的石墨烯/铜基复合材料。研究结果表明,随着轧制次数的增加,石墨烯增强铜基复合材料的致密度得到进一步提高,因此电导率能够接近纯铜,且抗拉强度相比之下能提高49.5%。该方法所制备的石墨烯质量优良并且在轧制后保持与基体之间的良好结合,高致密度的复合材料导电性能与力学性能也可根据制备过程工艺参数进行控制,为石墨烯/铜基复合材料的制备提供了新的加工思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于镇洋
吕本元
何威
关键词:  冷轧  界面结合  石墨烯  铜基复合材料    
Abstract: Graphene reinforced copper matrix composites have the advantages of high strength and high conductivity, which has attracted much attention in high conductivity copper matrix composites. In order to further solve the problem of agglomeration of additional graphene and further improve the bonding between graphene and matrix, in this paper, a large area of three-dimensional continuous thin-layer graphene was in-situ grown on porous copper matrix which use acetylene as carbon source, and the bulk graphene/copper matrix composite with excellent comprehensive properties was prepared after secondary cold rolling and annealing heat treatment. The results show that with the increase of rolling times, the compactness of composites is improved, so the conductivity can be close to the pure copper, and the tensile strength can be increased by 49.5%. The graphene prepared by this method has high quality and good bonding with the matrix after rolling. The conductivity and mechanical properties of the composites with high density can also be controlled according to the process parameters, which provides a new processing idea for the preparation of graphene/copper matrix composites.
Key words:  cold rolling    interfacial bonding    graphene    copper matrix composites
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TB331  
基金资助: 国家自然科学基金(51701142)
通讯作者:  yuzhenyang@tiangong.edu.cn   
作者简介:  于镇洋,天津工业大学高级工程师,2011年在天津大学获得材料学工学博士学位,曾在天津钢铁集团技术中心从事研发工作,2015年进入高校工作。主要研究工作为新型金属基复合材料设计与性能研究、钢铁材料微观分析和失效研究,在研一项国家自然科学基金青年项目,并参与多项国家自然科学基金和天津市重点研发项目。吕本元,2018年6月毕业于天津工业大学,获得工学学士学位。现为天津工业大学机械工程学院硕士研究生,在于镇洋教授的指导下进行研究。主要研究方向为铜基复合材料的制备及其性能。
引用本文:    
于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
YU Zhenyang, LYU Benyuan, HE Wei. Effect of Cold Rolling on Properties of In-situ Growing Three-dimensional Graphene/Copper Matrix Composites. Materials Reports, 2020, 34(Z2): 390-394.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/390
1 Yang Z,Chabi S,Xia Y,et al.Progress in Natural Science Materials International,2015,24(6),554.
2 Yan Z,Yao W,Hu L, et al.Nanoscale,2015,7(13),5563.
3 Zhao W,Chen W,Yue Y,et al.Applied Thermal Engineering,2017,113,481.
4 Chen Y,Zhang X,Liu E,et al.Scientific Reports,2016,6,19363.
5 Zhang D,Zhan Z.RSC Advances,2016,6(57),52219.
6 Gao X,Yue H,Guo E,et al.Powder Technology,2016,301,601.
7 Zhang D,Zhan Z.Journal of Alloys & Compounds,2016,654,226.
8 Chu K,Jia C.Status Solidi A, 2014,211,184.
9 Li Z,Fan G L,Tan Z Q,et al. Nano-Micro Letters,2016,8( 1),54.
10 Wang H,Zhang Z H,Hu Z Y,et al.Materials Science and Engineering A,2018,715,163.
11 韦德满,黄朴,周治文,等.特种铸造及其有色合金,2020,40(3),259.
12 Hamed A,Samira E .Journal of Alloys and Compounds,2019,806,553.
13 Jiang L,Zhou X F,Fang Q L,et al. Materials Science Engineering A,2016,654,124.
14 Song X,Gao Y,Ne Y,et al.Nano Letters,2016,16,6109.
15 岳红彦,高鑫,林轩宇. 哈尔滨理工大学学报,2014,19(5),1.
16 胡忠良,李雪峰,刘伟健,等.湖南工业大学学报,2016,30(3),58.
17 Qiao Z J, Zhou T, Kang J L, et al. Materials Letters, 2018, 224,37.
18 Nam Do V,Anh Le H.Applied Physics Letters,2012,101(16),161605.
19 Chen F Y, Ying J M, Wang Y F, et al.Carbon, 2016, 96,836.
20 Zhang D D, Zhan Z J. Journal of Alloys and Compounds, 2016, 654,226.
[1] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[2] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[3] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[4] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[5] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[6] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[7] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[10] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[11] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[12] 程正富, 周明军, 杨邦朝, 郑瑞伦. 石墨烯热学性能非简谐效应的研究进展[J]. 材料导报, 2020, 34(9): 9095-9100.
[13] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[14] 刘宇程, 祝梦, 陈明燕, 涂雯雯, 甘冬. 氧化石墨烯/金属有机框架材料复合膜在有机废水处理中的研究进展[J]. 材料导报, 2020, 34(7): 7003-7009.
[15] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed