Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 376-380    
  金属与金属基复合材料 |
SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能
宋亢, 坚增运, 王渭中, 陈焱
西安工业大学材料与化工学院,西安 710021
Properties and Process Optimization of 10%SiCp/AlSi10Mg Composites by SLM
SONG Kang, JIAN Zengyun, WANG Weizhong, CHEN Yan
School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 9380KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在探究选区激光熔化(SLM)成形技术对10%SiC颗粒增强AlSi10Mg复合材料的影响规律时,采用不同的成形工艺参数(扫描速度和扫描间距)组合范围对成形件的显微组织、相对致密度和物理性能进行研究。结果表明,在相同的扫描功率下,当扫描间距从0.05 mm上升到0.14 mm时,SLM成形的复合材料试样致密度先上升后下降;当扫描速度从700 mm/s上升到1 700 mm/s时,复合材料试样的致密度也先上升后下降;当选择工艺参数为激光功率300 W、铺粉层厚0.03 mm、扫描速度1 100 mm/s、扫描间距0.11 mm时,10%SiC颗粒增强AlSi10Mg复合材料的相对致密度可以达到98.34%,布氏硬度为189HBW。同时试样内部孔洞和裂纹较少,SiC颗粒在铝基体中均匀分布,与铝基体有着良好的界面反应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋亢
坚增运
王渭中
陈焱
关键词:  选区激光熔化(SLM)  碳化硅  相对致密度  布氏硬度    
Abstract: In order to investigate the effect of selective laser melting (SLM) forming technology on 10%SiC particle reinforced AlSi10Mg composite material, the microstructure, relative density and physical properties of forming parts were studied by using different combination range of for-ming process parameters (scanning speed and scanning spacing). The results show that, under the same scanning power, when the scanning spacing increases from 0.05 mm to 0.14 mm, the density of composite samples formed by SLM first increases and then decreases. When the scanning speed increases from 700 mm/s to 1 700 mm/s, the density of composite samples also increases first and then decreases. When the laser power is 300 W, the thickness of powder layer is 0.03 mm, the scanning speed is 1 100 mm/s, and the scanning spacing is 0.11 mm, the relative density of 10%SiC particles reinforced AlSi10Mg composite material could reach 98.34%, and the brinell hardness was 189HBW. At the same time, there are few holes and cracks in the sample, SiC particles are uniformly distributed in the aluminum matrix, and there have a good interface reaction between SiC particles and aluminum matrix.
Key words:  selective laser melting (SLM)    silicon carbide    relative density    Brinell hardness
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TG148  
基金资助: 国家自然科学基金(51971166)
通讯作者:  jianzengyun@xatu.edu.cn   
作者简介:  宋亢,西安工业大学硕士研究生,主要从事SLM成形铝基复合材料工艺研究与应用分析以及增材制造等行业分析与规划研究工作。坚增运,西北工业大学博士,日本宇宙科学研究所博士后,二级教授,博士研究生导师,陕西省“三五人才”,陕西省光电功能材料与器件重点实验室主任,陕西省优秀教师,教育部优秀青年教师。主持国家自然科学基金项目5项、国家973专题项目2项;获省部级科技奖3项,发明专利4项。以第一作者在Acta Materialia等学术期刊上发表论文60多篇。
引用本文:    
宋亢, 坚增运, 王渭中, 陈焱. SLM成形10%SiC颗粒增强铝基复合材料的工艺优化及性能[J]. 材料导报, 2020, 34(Z2): 376-380.
SONG Kang, JIAN Zengyun, WANG Weizhong, CHEN Yan. Properties and Process Optimization of 10%SiCp/AlSi10Mg Composites by SLM. Materials Reports, 2020, 34(Z2): 376-380.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/376
1 Kaushik Y, Verma A S, Jawalkar C S, et al. Materials Today Procee-dings, 2017, 4(2), 2927.
2 李怀学, 巩水利, 孙帆, 等. 航空制造技术, 2012, 55(20), 26.
3 刘业胜, 韩品连, 胡寿丰, 等. 航空制造技术, 2014, 57(10), 62.
4 段伟, 赵哲, 吉红伟, 等. 材料导报:研究篇, 2019, 33(5), 94.
5 Kunze K, Etter T, Grasslin J, et al. Materials Science and Engineering, 2015, 620, 213.
6 Kunar K K A, Vviswanath A, Rajan T P D, et al. Acta Metallurgica Sinica, 2014, 27(2), 295.
7 Shankar M C G, Jayashree P K, Shettya R, et al. International Journal of Current Engineering & Technology, 2013, 3(3), 922.
8 孔亚茹, 郭强, 张荻, 等. 材料导报: 综述篇, 2015, 29(5), 34.
9 史玉升, 鲁中良, 章文献, 等. 中国表面工程. 2006, 19(5), 150.
10 Juergen B, Edgar H, Eugen A, et al. Proceedings of SPIE, 2007, 6459, 59.
11 Kruth J P, Froyen L, Vaerenbergh J, et al. Journal of Materials Proces-sing Technology, 2004, 149, 616.
12 Zhao X, Gu D D, Ma C L, et al. Vacuum, 2019, 160, 189.
13 柯林, 达薛刚, 朱海红, 等. 上海航天, 2019, 36(2), 118.
14 Badrossamay M, Childs T H C. International Journal of Machine Tools Manufacture, 2007, 47, 779.
15 郝世明, 谢敬佩, 王爱琴. 材料热处理学报, 2016, 37(5), 1.
16 SUN M L, Jerry Y H. Proceedings of SPIE, 2002, 4426, 356.
17 Kozo O, Masanori S. International Joumal of Machine Tools Manufacture, 2006, 46, 1188.
18 Edson S, Kozo O, Masanori S, et al. In: The 5th International Sympo-sium on Laser Precision Microfabrication. Nara, Japan, 2004, pp. 1465.
19 罗思海, 周留成, 何卫锋, 等. 激光与红外, 2014(8), 850.
20 孙超, 沈茹娟, 宋旼. 中国有色金属学报, 2012, 22(2), 476.
21 Kim C T, Leej K, Plichat M R. Metallurgica Transactions A, 1990, 21(2), 673.
22 Prangnel P B, Downes T, Stobbs W M, et al. Acta Metallurgica et Materialia, 1994, 42(10), 3245.
[1] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[2] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[3] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[4] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[5] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[6] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 《材料导报》期刊社, 2018, 32(11): 1757-1778.
[7] 米翔, 龚俊, 曹文翰, 王宏刚, 任俊芳. 纳米SiC与PI填充改性PTFE复合材料的摩擦磨损性能*[J]. 《材料导报》期刊社, 2017, 31(18): 102-108.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed