Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 177-181    
  无机非金属及其复合材料 |
基于纳米孔的单分子检测技术及其研究进展
杨森, 鲁雁秋, 孙凤, 陈耀凯
重庆市公共卫生医疗救治中心,重庆 400036
Nanopores-based Single Molecule Analysis Technology and Its Recent Progress
YANG Sen, LU Yanqiu, SUN Feng, CHEN Yaokai
Chongqing Public Health Medical Center, Chongqing 400036, China
下载:  全 文 ( PDF ) ( 3511KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米孔因其纳米级特性而成为研究的热点,纳米孔单分子检测技术具有快速、无需标记和无需扩增等优点,为单分子级别的分子生物学研究打开了新的大门。该技术是在外部电压的驱动下,尺寸略小于孔径的分子通过纳米孔,监测分子易位时产生的电流变化以分析分子性质。基于纳米孔的单分子分析技术在许多领域具有巨大的潜在应用价值,发展迅速。纳米孔检测技术现已应用于包括核苷酸、DNA、药物、聚合物和多肽在内的单个分子检测,也已扩展到医疗诊断和DNA测序。本文重点介绍纳米孔检测技术的基本原理、几种应用良好的生物纳米孔、几种应用较广的固态纳米孔,讨论了生物和固态纳米孔优缺点,概述了该技术在疾病诊断、DNA测序等方面的应用进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨森
鲁雁秋
孙凤
陈耀凯
关键词:  纳米孔  单分子检测技术  DNA测序  易位    
Abstract: Nanopores have received wide attention due to their nanoscale properties. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale as a rapid, label-free and amplification-free technique. With the application of an external voltage, molecules with sizes slightly smaller than the pore size are passed through the pore. The properties of the target molecules can be calculated by monitoring the ionic current modulations from translocation events. Single-molecule detection technologies based on nanopores have got a fast deve-lopment, have great potential applications in many areas, including nucleotides, DNA, drugs, polymers and peptides, as well as in medical diagnosis and DNA sequencing. This review mainly describes the basic principle of nanopores detection technology, several good biological nano-pores, several widely used solid-state nanopores. The advantage and disadvantage of two categories nanopores are compared and the application progress of this technology in disease diagnosis, DNA sequencing are discussed.
Key words:  nanopores    single molecule detection    DNA sequencing    translation
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  Q819  
基金资助: 十三五国家科技重大专项(2017ZX10202101-001-016;2018ZX10302104);委属单位能力提升计划项目(2019NLTS003)
通讯作者:  yaokaichen@hotmail.com   
作者简介:  杨森,2015年6月毕业于西南大学药学院,获得医学硕士学位,现为重庆市公共卫生医疗救治中心科研助理,研究方向是基于固态纳米孔的HIV抗体检测研究及临床应用。陈耀凯,教授,博士研究生导师,先后在澳大利亚和美国耶鲁大学留学;牵头主持“十三五”国家科技重大专项总课题1项,负责“十三五”国家科技重大专项任务5项;主持国家自然科学基金面上项目2项,完成新药临床试验研究项目10余项;以第一作者或通讯作者发表SCI论文15篇、中文期刊论文150余篇;主编专著1部,参编著作12部;获得国家科技进步二等奖和重庆市科技进步一等奖各1项。国家卫生健康委员会艾滋病医疗专家组成员、国家临床医学中心评审专家、国家自然科学基金评审专家、中华医学会感染病分会艾滋病学组委员,中华医学会热带病与寄生虫病分会艾滋病学组委员,中华中医药学会防治艾滋病分会常务委员,中国医院协会传染病管理分会委员及艾滋病综合管理学组副组长,重庆市艾滋病治疗专家组组长,重庆市性病艾滋病防治协会临床专委会主任委员,重庆市医学会感染病学专委会副主任委员、重庆市医院协会传染病管理专委会副主任委员。
引用本文:    
杨森, 鲁雁秋, 孙凤, 陈耀凯. 基于纳米孔的单分子检测技术及其研究进展[J]. 材料导报, 2020, 34(Z2): 177-181.
YANG Sen, LU Yanqiu, SUN Feng, CHEN Yaokai. Nanopores-based Single Molecule Analysis Technology and Its Recent Progress. Materials Reports, 2020, 34(Z2): 177-181.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/177
1 Branton D, Deamer D W, Marziali A, et al. Nature Biotechnology, 2008, 26(10), 1146.
2 Wanunu M.Physics of Life Reviews, 2012, 9(2), 125.
3 Maitra R D, Kim J, Dunbar W B. Electrophoresis, 2012, 33(23), 3418.
4 Lee K, Park K B, Kim H J, et al. Advanced Materials, 2018, 30(42), e1704680.
5 Cornell B A, Braach-Maksvytis V L, King L G, et al. Nature, 1997, 387(6633), 580.
6 Venkatesan B M, Dorvel B, Yemenicioglu S, et al. Advanced Materials, 2009, 21(27), 2771.
7 Derrington I M, Butler T Z, Collins M D, et al. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(37), 16060.
8 Luchian T, Park Y, Asandei A, et al.Accounts of Chemical Research, 2019, 52(1), 267.
9 Butler T Z, Pavlenok M, Derrington I M, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52), 20647.
10 Cai R, Price I R, Ding F, et al. Nucleic Acids Research, 2019, 47(18), 9818.
11 Ayub M, Stoddart D, Bayley H. ACS Nano, 2015, 9(8), 7895.
12 Haque F, Li J, Wu H C, et al. Nano Today, 2013, 8(1), 56.
13 Yanagi I, Akahori R, Hatano T, et al. Scientific Reports, 2014, 4, 5000.
14 Liu S, Zhao Q, Xu J, et al. Nanotechnology, 2012, 23(8), 085301.
15 Song L, Hobaugh M R, Shustak C, et al. Science, 1996, 274(5294), 1859.
16 Cherf G M, Lieberman K R, Rashid H, et al. Nature Biotechnology, 2012, 30(4), 344.
17 Kang X F, Gu L Q, Cheley S, et al. Angewandte Chemie International Edtion, 2005, 44(10), 1495.
18 Laszlo A H, Derrington I M, Ross B C, et al. Nature Biotechnology, 2014, 32(8), 829.
19 Abiola O, Angel J M, Avner P, et al. Nature Reviews Genetics, 2003, 4(11), 911.
20 Haque F, Wang S, Stites C, et al. Biomaterials, 2015, 53, 744.
21 Lee T J, Guo P. Journal of Molecular Biology, 2006, 356(3), 589.
22 Guo Y Y, Blocker F, Xiao F, et al. Journal of Nanoscience and Nanotechnology, 2005, 5(6), 856.
23 Haque F, Geng J, Montemagno C, et al. Nature Protocol, 2013, 8(2), 373.
24 Traversi F, Raillon C, Benameur S M, et al. Nature Nanotechnology, 2013, 8(12), 939.
25 Yanagi I, Ishida T, Fujisaki K, et al. Scientific Reports, 2015, 5, 14656.
26 Ghazaryan L, Kley E B, Tünnermann A, et al. Nanotechnology, 2016, 27(25), 255603.
27 Venkatesan B M, Bashir R. Nature Nanotechnology, 2011, 6(10), 615.
28 Liu S, Lu B, Zhao Q, et al. Advanced Materials, 2013, 25(33), 4549.
29 Garaj S, Hubbard W, Reina A, et al. Nature, 2010, 467(7312), 190.
30 Schneider G F, Kowalczyk S W, Calado V E, et al. Nano Letters, 2010, 10(8), 3163.
31 Farimani A B, Min K, Aluru N R. ACS Nano, 2014, 8(8), 7914.
32 Tan S, Wang L, Liu H, et al. Nanoscale Research Letters, 2016, 11(1), 50.
33 Hall A R, Scott A, Rotem D, et al. Nature Nanotechnology, 2010, 5(12), 874.
34 Chen Z, Jiang Y, Dunphy D R, et al. Nature Materials, 2010, 9(8), 667.
35 Schneider G F, Xu Q, Hage S, et al. Nature Communications, 2013, 4, 2619.
36 Choi J, Lee C C, Park S. Microsystems & Nanoengineering, 2019, 5, 12.
37 Tang Z, Lu B, Zhao Q, et al. Small, 2014, 10(21), 4332.
38 Traversi F, Raillon C, Benameur S M, et al. Nature Nanotechnology, 2013, 8(12), 939.
39 Park K B, Kim H J, Kim H M, et al. Nanoscale, 2016, 8(10), 5755.
40 Feng J, Liu K, Bulushev R D, et al. Nature Nanotechnology, 2015, 10(12), 1070.
41 Bai J, Wang D, Nam S W, et al. Nanoscale, 2014, 6(15), 8900.
42 Goto Y, Akahori R, Yanagi I. Advances in Experimental Medicine and Biology, 2019, 1129, 131.
43 Yusko E C, Johnson J M, Majd S, et al. Nature Nanotechnology, 2011, 6(4), 253.
44 Ayub M, Stoddart D, Bayley H. ACS Nano, 2015, 9(8), 7895.
45 Soskine M, Biesemans A, De Maeyer M, et al. Journal of the American Chemical Society, 2013, 135(36), 13456.
46 Wei R, Gatterdam V, Wieneke R, et al. Nature Nanotechnology, 2012, 7(4), 257.
47 Kowalczyk S W, Kapinos L, Blosser T R, et al. Nature Nanotechnology, 2011, 6(7), 433.
48 Kasianowicz J J, Brandin E, Branton D, et al. Proceedings of the Natio-nal Academy of Sciences of the United States of America, 1996, 93(24), 13770.
49 Clarke J, Wu H C, Jayasinghe L, et al. Nature Nanotechnology, 2009, 4(4), 265.
50 Movileanu L, Howorka S, Braha O, et al. Nature Biotechnology, 2000, 18(10), 1091.
51 Liu L, Li T, Zhang S, et al. Angewandte Chemie International Edition, 2018, 57(37), 11882.
52 Kang X F, Cheley S, Guan X, et al. Journal of the American Chemical Society, 2006, 128(33), 10684.
53 Wang Y, Zheng D, Tan Q, et al. Nature Nanotechnology, 2011, 6(10), 668.
54 Ying Y L, Li D W, Liu Y, et al. Chemical Communications, 2012, 48(70), 8784.
55 Wang L, Han Y, Zhou S, et al. Biosensors & Bioelectronics, 2014, 15(62), 158.
56 Sarathy A, Qiu H, Leburton J P. Journal of Physical Chemistry B, 2017, 121(15), 3757.
57 Wei R, Gatterdam V, Wieneke R, et al. Nature Nanotechnology, 2012, 7(4), 257.
58 Venkatesan B M, Estrada D, Banerjee S, et al. ACS Nano, 2012, 6(1), 441.
59 Larkin J, Henley R Y, Muthukumar M, et al. Biophysical Journal, 2014, 106(3), 696.
60 Wen L, Hou X, Tian Y, et al. Advanced Materials, 2010, 22(9), 1021.
[1] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[2] 赵志龙, 高建军, 韦路锋, 崔凯, 侯铁城. NiAl-W纳米多孔阵列制备方法研究*[J]. 《材料导报》期刊社, 2017, 31(18): 25-27.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed