Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19197-19205    https://doi.org/10.11896/cldb.19080075
  高分子与聚合物基复合材料 |
基于超支化聚乙烯亚胺的双/多模态成像造影剂的研究进展
朱静怡, 盛慧, 张林珊, 管婧希
南京工业大学药学院,南京211800
Research Progress in Hyperbranched Polyethyleneimine-based Dual/Multi-modal
Imaging Agent
ZHU Jingyi, SHENG Hui, ZHANG Linshan, GUAN Jingxi
School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
下载:  全 文 ( PDF ) ( 6552KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分子影像学技术作为癌症早期诊断的重要手段,其主要在组织、细胞和亚细胞水平上显示活体生理学变化,并进一步对其生物学行为进行定性和定量研究。目前,现代分子影像学技术包括X射线断层摄影术(CT)、光声成像(PA)、磁共振成像(MR)、荧光成像(FL)、单光子发射计算机断层显像(SPECT)和正电子发射型计算机断层显像(PET)等。各单一成像模式均存在优缺点,在空间分辨率、软组织分辨率、灵敏度及准确性等方面无法提供综合全面的信息以诊断及监测癌症。双/多模态成像模式的构建可极大地弥补以上缺陷,通过结合各单模态成像技术的优势来全面地反映癌症的发生、发展。因此,双/多模态造影剂成为研究热点。
目前,在众多纳米造影剂中,超支化聚乙烯亚胺由于优良的结构及理化性质,外围基团可进行功能化修饰,内部空腔可负载多种有机/无机化合物,其作为纳米造影剂的优良平台被广泛使用。对超支化聚乙烯亚胺外围基团修饰聚乙二醇、叶酸、透明质酸可提高其在体内的生物相容性及组织特异性,进一步经螯合剂负载金属离子、包裹或稳定金属及金属氧化物纳米颗粒,可有效整合各种成像元素,以实现双/多模态成像。基于超支化聚乙烯亚胺的平台作用,可增强成像元素的生物相容性、组织特异性、肿瘤富集度,构建的基于超支化聚乙烯亚胺的双/多模态成像造影剂在生物医学成像领域具有广阔的应用前景。
针对癌症的早期精确诊断,本文重点介绍了基于超支化聚乙烯亚胺的双/多模态成像造影剂的最新研究进展,对目前报道的基于超支化聚乙烯亚胺的双/多模态成像造影剂的构建及生物医学应用进行总结,涵盖CT/MR成像、CT/PA成像、SPECT/CT成像、PET/MR成像、FL/MR成像及三模态成像,为新型智能化纳米造影剂的构建提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱静怡
盛慧
张林珊
管婧希
关键词:  超支化聚乙烯亚胺  纳米平台  双/多模态成像  肿瘤    
Abstract: As an important method for early diagnosis of cancer, molecular imaging technology mainly demonstrates physiological change in vivo from perspectives of tissue, cells and subcellular fraction and further studies the biological behaviors qualitatively and quantitatively. Nowadays, modern molecular imaging techniques includes X-ray computed tomography (CT), photoacoustic imaging (PA), magnetic resonance (MR), fluorescence imaging (FL), single-photon emission computed tomography (SPECT), and positron emission computed tomography (PET), etc. However every single imaging mode has its advantages and disadvantages, which cannot provide comprehensive information to diagnose and monitor cancer in terms of spatial resolution, soft tissue resolution, sensitivity and accuracy. The construction of dual/multi-modal imaging could greatly make up the disadvantages above to comprehensively reflect the occurrence and development of cancer through combining the advantages of each single-modal imaging technology. Therefore, dual/multi-modal imaging agent is a hot research topic.
At present, among various nano-contrast agents, hyperbranched polyethyleneimine can be widely utilized as an excellent platform for contrast agent according to the precise structure and physicochemical property, which can be functional modified on terminal groups and load various organic/inorganic compound in internal cavity. Through modification of polyethylene glycol, folic acid, and hyaluronic acid on the terminal groups of polyethyleneimine, the biocompatibility and tissue specificity of multifunctional polyethyleneimine can be improved. Further loading metal ion via chelate, entrapping or stabilizing metal and metallic oxide nanoparticle in the multifunctional polyethyleneimine could effectively integrate every imaging element to achieve dual/multi-modal imaging. Based on the platform function of hyperbranched polyethyleneimine, which could enhance the biocompatibility, tissue specificity, and tumor accumulation of imaging element, the generated hyperbranched polyethyleneimine-based dual/multi-modal imaging agent has broad application prospect in biomedical imaging field.
As for the accurate diagnosis of cancer at early stage, the latest developments of hyperbranched polyethyleneimine-based dual/multi-modal imaging agent in this review are highlighted, and the construction and biomedical application of hyperbranched polyethyleneimine-based dual/multi-modal imaging agent reported so far are summarized, which includes CT/MR imaging, CT/PA imaging, SPECT/CT imaging, PET/MR imaging, FL/MR imaging and tri-modal imaging. It provides references for the build of novel intelligent contrast agent.
Key words:  hyperbranched polyethyleneimine    nanoplatform    dual/multi-modal imaging    tumor
                    发布日期:  2020-11-05
ZTFLH:  O64  
基金资助: 国家自然科学基金(21807059);江苏省自然科学基金(BK20180711);江苏省高等学校自然科学研究面上项目(17KJB350005);南京工业大学大学生创新创业与实践开放基金(2019DC0939)
通讯作者:  zhujy1210@njtech.edu.cn   
作者简介:  朱静怡,南京工业大学药学院讲师。2011年本科毕业于湖北大学,获得应用化学学士学位。2017年毕业于东华大学,获得仿生材料博士学位。2015年,曾作为联合培养博士研究生在南加州大学学习。2017年9月,在南京工业大学任职。近年来,发表国内外学术论文20余篇,申请国家发明专利5项,其中授权3项。目前研究工作主要围绕基于聚合物的有机/无机纳米杂化材料用于癌症的早期诊断及治疗应用,主持的项目包括国家自然科学基金青年科学基金项目、江苏省自然科学基金青年基金项目和江苏省高等学校自然科学研究面上项目等。
引用本文:    
朱静怡, 盛慧, 张林珊, 管婧希. 基于超支化聚乙烯亚胺的双/多模态成像造影剂的研究进展[J]. 材料导报, 2020, 34(19): 19197-19205.
ZHU Jingyi, SHENG Hui, ZHANG Linshan, GUAN Jingxi. Research Progress in Hyperbranched Polyethyleneimine-based Dual/Multi-modal
Imaging Agent. Materials Reports, 2020, 34(19): 19197-19205.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080075  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19197
1 Gonyeau M J, Yuen D W. Pharmacotherapy,2010,30,177.
2 Kaasgaard T A, Thomas L. Expert Opinion on Drug Delivery,2010,7,225.
3 Argiris A B, Bruce E. Haraf D J, et al. Clinical Cancer Research,2004,10,1956.
4 Inagaki J R, Victorio B, Gerald P. Cancer,1974,33,568.
5 Jin D, Wang X, Fu B, et al. International Journal of Clinical and Experimental Medicine,2019,12,5447.
6 Kilin V M, Christophe C, Samuel W, et al. Scientific Reports,DOI:10.1038/s41598-017-16628-3.
7 Wang F, Zhang Z, Zhong Q X, et al. Journal of Medical Systems,DOI:10.1007/s10916-019-1199-3.
8 Nioche C O, Fanny B, Sarah R, et al. Journal of Nuclear Medicine,2017,58,1316.
9 Filippou V, Tsoumpas C. Medical Physics,2018,45,e740.
10 Weissleder R. Science,2006,312,1168.
11 Li H, Hou M H, Lin R, et al. Quantitative Imaging in Medicine and Surgery,2019,9,905.
12 Naeyaert M, Rouse D, Mai Z H, et al. Journal of Magnetic Resonance,2019,300,18.
13 Xie W S, Guo Z H, Cao Z B, et al. ACS Biomaterials Science & Engineering,2019,5,2555.
14 Davis M E, Chen Z, Shin D M, et al. Nature Reviews Drug Discovery,2008,7,771.
15 Xiong R L, Cheng L K, Tian Y, et al. RSC Advances,2016,6,28063.
16 Lei C, Fang R H, Zhang C C, et al. Polymer Degradation and Stability,2019,163,7.
17 Ma H C, Qin Y F, Yang Z M, et al. ACS Applied Materials & Interfaces,2018,10,20064.
18 Shao L H, Wan K W, Wang H, et al. Biomaterials Science,2019,7,3016.
19 Zhu J Y, Li H S, Xiong Z J, et al. ACS Applied Materials & Interfaces,2018,10,34954.
20 Zhou B Q, Xiong Z G, Wang P, et al. Drug Delivery,2018,25,178.
21 Cai H D, An X, Cui J, et al. ACS Applied Materials & Interfaces,2013,5,1722.
22 Jeon I Y, Noh H J, Baek J B, et al. Molecules, DOI:10.3390/molecules23030657.
23 Satapathy M K, Nyambat B, Chiang C W, et al. Molecules, DOI:10.3390/molecules23061256.
24 Liu M, Li J, Li B X, et al. Langmuir,2018,34,1574.
25 Zhao L Z, Li Y J, Zhu J Y, et al. Journal of Nanobiotechnology, DOI:10.1186/s12951-019-0462-6.
26 Li J C, Hu Y, Yang J, et al. Biomaterials,2015,38,10.
27 Dolansky J, Demel J, Mosinger J, et al. Journal of Materials Science,2019,54,2740.
28 Xue J G, Wang C G, Ma Z F, et al. Materials Chemistry and Physics,2007,105,419.
29 Sun W J, Zhang J L, Zhang C C, et al. Journal of Materials Chemistry B,2018,6,4835.
30 Li J C, Zheng L F, Cai H D, et al. ACS Applied Materials & Interfaces,2013,5,10357.
31 Hu Y, Yang J, Wei P, et al. Journal of Materials Chemistry B,2015,3,9098.
32 Zhou B Q, Xiong Z G, Zhu J Z, et al. Nanomedicine,2016,11,1639.
33 Upputuri P K, Pramanik M. Journal of Biomedical Optics,2019,24,1.
34 Lei P P, An R, Zheng X H, et al. Nanoscale,2018,10,16765.
35 Zhou B Q, Wang R Z, Chen F, et al. ACS Applied Materials & Interfaces,2018,10,6146.
36 Knutsson L, Xu J D, Ahlgren A, et al. Magnetic Resonance in Medicine,2018,80,1320.
37 Minhas A S, Chauhan M, Fu F R, et al. Magnetic Resonance in Medicine,2019,81,2264.
38 Caravan P, Ellison J J, McMurry T J et al. Chemical Reviews,1999,99,2293.
39 Chen F, Bu W B, Zhang S J, et al. Advanced Functional Materials,2013,23,298.
40 Pan Y, Chen W D, Yang J, et al. Analytical Chemistry,2018,90,1992.
41 Anh C, Pimenta R M L, Lee H B, et al. Cytometry, Part A,2019,95A,80.
42 Ashokan A, Menon D, Nair S, et al. Biomaterials,2010,31,2606.
[1] 王怀基, 董海青. 还原响应的白蛋白纳米颗粒负载甲氨蝶呤用于抗肿瘤治疗[J]. 材料导报, 2019, 33(Z2): 547-552.
[2] 杨焜, 王春来, 丁晟, 刘长军, 田丰, 李钒. 荧光碳量子点:合成、特性及在肿瘤治疗中的应用[J]. 材料导报, 2019, 33(9): 1475-1482.
[3] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed