Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13050-13057    https://doi.org/10.11896/cldb.19070017
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
再生混凝土界面结构及耐久性综述
李恒1, 郭庆军1, 王家滨1, 张凯峰2
1 西安工业大学建筑工程学院,西安 710021
2 中建西部建设北方有限公司,西安 710065
Meso-/Micro-Structure of Interfacial Transition Zone and Durability of Recycled Aggregate Concrete: a Review
LI Heng1, GUO Qingjun1, WANG Jiabin1, ZHANG Kaifeng2
1 School of Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021, China
2 China West Construction North Co., Ltd, Xi’an 710065, China
下载:  全 文 ( PDF ) ( 5290KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着城市化进程加快,废弃混凝土产量与日俱增,其处理方式以堆放、填埋为主,严重破坏生态环境。推广使用废弃混凝土生产再生骨料并用于制备再生骨料混凝土,已成为研究热点。目前,再生混凝土已应用于城市新建结构中。
再生混凝土界面结构具有高孔隙率,水分及侵蚀性离子的扩散作用会加剧界面结构劣化,使界面成为再生混凝土的强度限制相。近年来,众多学者通过改善再生混凝土内界面过渡区结构,以提高再生混凝土的基本力学性能,增强再生混凝土耐久性能,并取得了丰硕成果。
相关学者分别从细、微观角度对界面结构展开深入研究,揭示了新、旧骨料砂浆间界面结构对再生混凝土性能的影响机理,并以再生骨料及界面结构的多孔性为切入点进行了诸多改善研究,包括骨料预浸、骨料裹浆、骨料碳化、掺加矿物掺合料、完善再生混凝土制备方法等,均取得了良好的成果,降低了再生骨料性质和界面结构对再生混凝土的消极作用。在我国温差较大、盐渍土丰富的西北地区,再生混凝土结构主要面临抗冻融循环和抗盐侵蚀耐久性问题。目前,相关学者通过一系列试验研究已基本探明再生混凝土的冻融循环和盐侵蚀机理,关于盐侵蚀研究,建立了氯离子迁移模型以用于氯离子迁移评估,并对单一种类离子侵蚀界面结构进行了显微分析。另外,提出降低再生混凝土水灰比、选用高品质再生骨料、掺加适量矿物掺合料和掺加剂,有助于减少界面过渡区生成,增强再生混凝土的耐久性。
本文归纳了再生混凝土的研究进展,对再生混凝土的界面结构、力学性能、抗冻融循环、抗盐侵蚀性能等方面进行了综合评述,梳理了再生混凝土力学性能和耐久性的改善方法,分析了再生混凝土研究面临的主要问题并展望其前景,以期为今后我国西北地区废弃混凝土可循环利用及再生混凝土结构耐久性评估奠定理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
LI Heng
GUO Qingjun
WANG Jiabin
ZHANG Kaifeng
关键词:  再生混凝土  界面结构  力学性能  冻融循环  盐侵蚀    
Abstract: With the continuous development of the city, the output of waste concrete is increasing gradually. The disposal method of waste concrete is stacking and landfill, which damages the ecological environment seriously. Promoting the production of recycled aggregate (RA) from waste concrete and preparing recycled aggregate concrete(RAC) from RA have become research hotspots. At present, RAC has been widely used in new urban structures.
The interfacial transition zone (ITZ) structure of RAC has highly porosity, and the diffusion of water and corrosive ions intensifies the deterioration of the ITZ. Therefore, the ITZ structure becomes the strength limiting phase of RAC. In recent years, in order to improve the mechanical properties and durability of RAC, scholars have made continuous research on promoting the ITZ structure, and achieved fruitful results.
The scholars conducted study on the ITZ structure from the perspective of meso- and micro-structure systematically, the influence mechanism of the ITZ structure between new and old aggregate mortar on the performance of RAC was revealed. At the same time, many improvements have been made with the porosity of the RA and ITZ structure as the entry point, including aggregate prewet, paste encapsulated, carbonation, mineral admixture, improvement of concrete preparation methods. These methods have achieved good results and reduced the negative effects of RA properties and ITZ structure on RAC. In the northwest China, the anti-freeze-thaw cycles and salt-resistance erosion are the main problems in the research of durability of RAC. Because the temperature difference is large and the saline soil is rich in this area. Currently, relevant scho-lars have basically proved the freeze-thaw cycle and salt erosion process mechanism of RAC through a series of experimental studies, the chloride ion diffusion model has been established for chloride ion diffusion assessment on salt erosion research. And made the microscopic analysis on the erosion ITZ structure of a single type of erosion ion. In addition, it is proposed to reduce the water-cement ratio of RAC, select high-quality RA, blend with appropriate amount of admixture and adulterating agent, which can reduce the formation of ITZ and improve the durability of RAC.
This paper summarizes the research progress of RAC, and reviews the ITZ structure, mechanical properties, freeze-thaw resistance and salt corrosion resistance of RAC comprehensively. The method for improving the mechanical properties and durability of RAC is combed. The main problems faced by RAC research are analyzed and its prospects are prospected, in order to lay a theoretical foundation for the future recycling of waste concrete and the durability evaluation of RAC structures in northwest China.
Key words:  recycled aggregate concrete    interfacial transition zone structure    mechanical properties    freeze-thaw cycle    salt erosion
               出版日期:  2020-07-10      发布日期:  2020-06-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908440);陕西省科技厅自然科学基础研究计划项目(2018JQ5032);陕西省教育厅自然科学研究专项(18JK0376)
通讯作者:  wangjiabin@xatu.edu.cn   
作者简介:  李恒,2018年6月毕业于西安工业大学,获得工学学士学位。现为西安工业大学硕士研究生,在王家滨老师的指导下进行混凝土耐久性研究。目前主要从事再生混凝土复合盐侵蚀耐久性研究。
王家滨,西安工业大学建筑工程学院,讲师。2017年1月毕业于西安建筑科技大学结构工程专业,获工学博士学位。同年加入西安工业大学建筑工程学院工作至今,主要从事喷射混凝土及再生混凝土耐久性研究。发表学术论文20余篇,SCI及EI检索10篇。
引用本文:    
李恒, 郭庆军, 王家滨. 再生混凝土界面结构及耐久性综述[J]. 材料导报, 2020, 34(13): 13050-13057.
LI Heng, GUO Qingjun, WANG Jiabin, ZHANG Kaifeng. Meso-/Micro-Structure of Interfacial Transition Zone and Durability of Recycled Aggregate Concrete: a Review. Materials Reports, 2020, 34(13): 13050-13057.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070017  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13050
1 Mahta P K, Paulo J M M. In:Concrete, Microstructure Properties and Materials (3rd Edition). McGraw-Hill Com, New York, USA, 2006.
2 Kong D, Lei T, Zheng J, et al.Construction and Building Materials, 2010, 24(5), 701.
3 Otsuki N, Asce M, Miyazato S, et al. Journal of Materials in Civil Engineering, 2003, 15(5), 443.
4 Yu H F. Study on high performance concrete in salt lake,durability,mechanism and service life perdiction. Ph.D. Thesis, Southeast University, China, 2004.
余红发. 盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法. 博士学位论文, 东南大学, 2004.
5 Li J, Xiao H, Zhou Y. Construction and Building Materials, 2009, 23, 1287.
6 Li W G, Xiao J Z, Sun Z H, et al. Construction and Building Materials, 2012, 35, 1045.
7 Lee G C, Choi H B. Construction and Building Materials, 2013, 40, 455.
8 Leite M B, Monteiro P J M. Cement and Concrete Research, 2016, 81, 38.
9 Xiao J Z, Liu Q, Li W G, et al. Journal of Qingdao Technological University, 2009, 30(4), 24(in Chinese).
肖建庄, 刘琼, 李文贵, 等. 青岛理工大学学报, 2009, 30(4), 24.
10 Anna S, Enric V R, Marilda B B, et al. Construction and Building Materials, 2014, 68, 677.
11 Jia Z J, HanY G, ZhangY M, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2017, 32(14), 838.
12 Assia D. Construction and Building Materials, 2018, 190, 1023.
13 Poon C S, Shui Z H, Lam L. Construction and Building Materials, 2004, 18(6), 461.
14 Xiao J Z, Li W G, Sun Z H, et al. Cement and Concrete Composites, 2013, 37, 276.
15 Guedes M, Evangelista L, Brito J, et al. Microscopy and Microanalysis, 2013, 19, 1222.
16 Salman S, Sandeep S, Sandeep C. Construction and Building Materials, 2017, 155, 688.
17 Diamond S, Huang J. Cement and Concrete Composites, 2001, 23, 179.
18 Xiao J Z, Lei B, Yuan B. Journal of Building Structure, 2008(5), 94.(in Chinese).
肖建庄, 雷斌, 袁飚. 建筑结构学报, 2008(5), 94.
19 Ngoc K B, Tomoaki S, Hiroshi T. Construction and Building Materials, 2017, 148, 376.
20 Thomas C, Setién J, Polanco J A, et al. Construction and Building Materials, 2013, 40, 1054.
21 Shi C K, Chi S P, Chan D. Journal of Materials in Civil Engineering, 2007, 19(9), 709.
22 César M, Zhu W Z, Torsten H, et al. Journal of Cleaner Production, 2014, 68, 216.
23 Evangelista L, de Brito J. Cement and Concrete Composites, 2010, 32(1), 9.
24 Chakradhara R M, Bhattacharyya S K, Barai S V. Materials and Structures, 2011, 44, 205.
25 Xiao J Z, Li W G, Fan Y H, et al. Construction and Building Materials, 2012, 31, 364.
26 Xiao J Z, Li W G, Poon C S. Science China Technological Sciences, 2012, 55, 1463.
27 Butler L, West J S, Tighe S L. Cement and Concrete Research, 2011, 41(10), 1037.
28 Xiao J Z, Lan Y. Chinese Journal of Building Materials, 2006(2), 154(in Chinese).
肖建庄, 兰阳. 建筑材料学报, 2006(2), 154.
29 Li J B, Xiao J Z, Huang J. Journal of Building Materials, 2006(3), 297(in Chinese).
李佳彬, 肖建庄, 黄健. 建筑材料学报, 2006(3), 297.
30 Togay O, Aliakbar G, Xie T Y. Journal of Materials in Civil Enginee-ring, 2018, 30(2), 04017275.
31 Xiao J Z. Journal of Tongji University(Natural Science), 2007(11), 1445(in Chinese).
肖建庄. 同济大学学报(自然科学版),2007(11),1445.
32 Hu Q, Song C, Zou C Y. Journal of Harbin Institute of Technology, 2009, 41(4), 33(in Chinese).
胡琼, 宋灿, 邹超英. 哈尔滨工业大学学报, 2009, 41(4), 33.
33 Huang Y, Deng Z H, Luo Y M, et al. Chinese Concrete Journal, 2010 (2), 14(in Chinese).
黄莹, 邓志恒, 罗延明, 等. 混凝土, 2010(2), 14.
34 Liu F, Bai G L, Chai Y Y, et al. Chinese Concrete Journal, 2010(9), 14(in Chinese).
刘丰, 白国良, 柴园园, 等. 混凝土,2010(9),14.
35 Hu M P. Chinese Concrete Journal, 2007(2), 52(in Chinese).
胡敏萍. 混凝土, 2007(2), 52.
36 Sallehan I, Mahyuddin R. Construction and Building Materials, 2013, 44, 464.
37 Tam Vivian W Y, Tam C M, Le K N. Conservation and Recycling, 2007, 50(1), 82.
38 Zhao Z H, Wang S D, Lu L C, et al. Construction and Building Mate-rials, 2013, 43, 191.
39 Kong D Y, Lei T, Zheng J J, et al. Construction and Building Materials, 2010, 24(5), 701.
40 Singh L P, Vishakha B, Aswathy M S, et al. Construction and Building Materials, 2018, 181, 217.
41 Ali K, Mansour G, Jorgede B, et al. Journal of Cleaner Production, 2018, 170, 42.
42 Berndt M L. Construction and Building Materials, 2009, 23(7), 2606.
43 Cao R Z, Zhou M R, Zhou Q, et al. Materials Reports B: Research Papers, 2019, 33(8), 2684(in Chinese).
曹润倬, 周茗如, 周群, 等. 材料导报:研究篇, 2019, 33(8), 2684.
44 Li L, Xiao J Z, Xuan D X, et al. Cement and Concrete Composites, 2018, 89, 169.
45 Zhang J K, Shi C J,Li Y K, et al. Journal of Materials in Civil Enginee-ring, 2015, 27(11), 291.
46 Li Q Y, Li Q Q, Yue G B, et al. Journal of Shenyang Jianzhu University(Natural Science), 2017, 33(4), 629(in Chinese).
李秋义, 李倩倩, 岳公冰,等. 沈阳建筑大学学报(自然科学版), 2017, 33(4), 629.
47 Wang Z X, Li Q Y, Xie R P, et al.Concrete, 2017(7), 15(in Chinese).
王忠星, 李秋义, 谢汝朋, 等. 混凝土, 2017(7), 15.
48 Tam Vivian W Y, Gao X F, Tam C M. Cement and Concrete Research, 2005, 35(6), 1195.
49 Kong D Y, Lei T, Zheng J J, et al.Construction and Building Materials, 2010, 24(5), 701.
50 Wang H L, Wang J J, Sun X Y,et al. Journal of Central South University, 2013, 20(12), 3715.
51 Wu J, Jing X H, Wang Z. Construction and Building Materials, 2017, 134, 210.
52 Yue G B, Li Q Y, Luo J L, et al. Materials Science Forum, 2017, 898, 2046.
53 Zhu H B, Li X. Key Engineering Materials, 2009, 400, 447.
54 Karel Šeps, Josef Fládr, Iva Broukalová. Procedia Engineering, 2016, 151, 329.
55 Cheng Y Q, Shang X Y, Zhang Y J. Journal of Physics, Conference Series, 2017, 870, 12.
56 Salem R M, Burdette E G, Jackson N M. ACI Materials Journal, 2003, 100, 216.
57 Roumiana Z, Francois B B, Eric W. Cement and Concrete Research, 2004, 34(10), 1927.
58 Aghabagloua A M, Yükselb C, Beglarigalec A, et al. Construction and Building Materials, 2019, 196, 295.
59 Andrzej A, Alina K. Cement and Concrete Composites, 2002, 24(2), 269.
60 Liu K H, Yan J C, Hu Q, et al. Construction and Building Materials, 2016, 106, 264.
61 Sindy S P, Belén G F, Fernando M A, et al. Construction and Building Materials, 2016, 122, 95.
62 Nobuaki Otsuki, Shin-ichi Miyazato, Wanchai Yodsudjai. Journal of Materials in Civil Engineering, 2003,15(5), 443.
63 Bendimerad A Z, Emmanuel R, Ahmed Loukili. Construction and Buil-ding Materials, 2016, 121, 733.
64 Salih T Y, Christian M, Simon H.Construction and Building Materials, 2015, 91, 288.
65 Qin Y H, Deng S C, Zhang X B. Journal of Central South University, 2007, 14(1), 409.
66 Gokce A, Nagataki S, Saek Ti, et al. Cement and Concrete Research, 2004, 34(5), 799.
67 Cao C, Zheng S S, Hu W B. Materials Reports A: Review Papers, 2019, 33(6), 1869(in Chinese).
曹琛, 郑山锁, 胡卫兵. 材料导报:综述篇, 2019, 33(6), 1869.
68 Guo H, Shi C J, Guan X M, et al. Cement and Concrete Composites, 2018, 89, 251.
69 Tu X, Zhu B J, Zhu J, et al. Concrete, 2018(9), 23(in Chinese).
涂熙, 朱宝剑, 朱君. 混凝土, 2018(9), 23.
70 Evangelista L, de Brito J. Cement and Concrete Composites, 2007, 29(5), 397.
71 Liang C F, Ma H W, Pan Y Q, et al. Construction and Building Mate-rials, 2019, 218, 506.
72 Wayne D, Chris G, Christian C, et al. Construction and Building Mate-rials, 2017, 145, 183.
73 Kanish K, Bhupinder S P, et al.Construction and Building Materials, 2016, 128, 67.
74 Zhang J, Li Q Y, Du J, et al. Concrete,2009(2), 94(in Chinese).
张健, 李秋义, 杜俊, 等. 混凝土, 2009(2), 94.
75 Jin W L, Zhao Y X. Concrete structure durability, Science Press, China, 2014(in Chinese).
金伟良, 赵羽习. 混凝土结构耐久性(第2版), 科学出版社, 2014.
76 Xiao J Z, Ying J W, Vivian W Y, et al. Science China Technological Sciences, 2014, 57(12), 2357.
77 Enric V, Marilda B, Diego, et al. Construction and Building Materials, 2014, 67(PartA), 61.
78 Wan X M, Liu G Q, Zhao T J, et al. Journal of Building Materials, 2019, 22(1), 31(in Chinese).
万小梅, 刘国强, 赵铁军, 等. 建筑材料学报, 2019, 22(1), 31.
79 Wu Y C, Xiao J Z. Construction and Building Materials, 2018, 162, 239.
80 Wei Y L. Anlysis for chloride diffusion in recycled aggregate concrete by considering the of double interface transition zone. Master’s Thesis, Guangxi University, China,2017(in Chinese).
韦玉柳. 考虑双界面过渡区影响的再生混凝土中氯离子扩散规律分析. 硕士学位论文, 广西大学, 2017.
81 Peng J X, Hu S W, Zhang J R, et al. Construction and Building Mate-rials, 2019,197, 587.
82 Li Q Y, Wang Z X, Yue G B, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(1), 27(in Chinese).
李秋义, 王忠星, 岳公冰, 等. 硅酸盐通报, 2017, 36(1), 27.
83 Santhanam M, Cohen M D, Olek J. Cement and Concrete Research, 2002,32, 915.
84 Seung T L. Waste Management, 2009, 29(8), 2385.
85 Fu T H, Wang R J,He X Y, et al. Journal of Water Resources and Water Engineering, 2018, 29(3), 194(in Chinese).
付腾欢, 王瑞骏, 何晓莹, 等. 水资源与水工程学报, 2018, 29(3), 194.
86 Qi B, Erosion resistance and mechanism of recycled aggragate concrete under multi coupling factors. Ph.D. Thesis, Southeast University, China,2017(in Chinese).
祁兵. 多因素耦合作用下再生混凝土抗侵蚀性能与机理研究. 博士学位论文, 东南大学, 2017.
87 Bulatovi V, Mele M, Radeka M, et al. Construction and Building Mate-rials, 2017, 152, 614.
88 Qian H X, Li Q, Zhi Y C, et al. Construction and Building Materials, 2019, 200, 344.
89 Dehwah H A F. Construction and Building Materials, 2007, 21, 29.
90 Mohamed A, Bassam A T, Mamoun Alqedra, et al. Engineering Research and Technology, 2017(4),137.
91 Wang Z X, Li Q Y, Cao Y B, et al. Bulletin of the Chinese Ceramic So-ciety, 2017, 36(2), 43(in Chinese).
王忠星, 李秋义, 曹瑜斌, 等.硅酸盐通报, 2017, 36(2), 43.
92 Jiang L, Niu D. Construction and Building Materials, 2016, 117, 88.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 王锐, 黄榜彪, 莫济成, 李青, 朱基珍. 冻融循环对烧结页岩多孔砖砌体抗剪性能的影响[J]. 材料导报, 2020, 34(Z1): 258-260.
[6] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[7] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[8] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[9] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[10] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[11] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[14] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[15] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed