Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 62-66    
  无机非金属及其复合材料 |
GO添加量对RGO/Cu复合材料组织与性能的影响
洪起虎1, 燕绍九1, 陈翔1, 李秀辉1, 舒小勇2, 吴廷光2
1 北京航空材料研究院石墨烯及应用研究中心,北京 100095
2 南昌航空大学材料科学与工程学院,南昌 330063
Effect of GO Addition on Microstructure and Properties of RGO/Cu Composite
HONG Qihu1, YAN Shaojiu1, CHEN Xiang1, LI Xiuhui1, SHU Xiaoyong2, WU Tingguang2
1 Research Center of Graphene Applications, Beijing Institute of Aeronautical Materials, Beijing 100095
2 School of Material Science and Engineering, Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 4928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用湿法球磨与复压复烧方法制备RGO/Cu复合材料,研究了GO添加量(0%、0.3%、0.5%、1.0%,质量分数,下同)对RGO/Cu复合材料的组织与性能的影响。结果表明:GO较均匀分布于铜基体中,且能起到细化晶粒的作用。GO的润滑作用促进晶粒滑移与转动,填补了晶粒间隙,提升了复合材料密度,其中0.5% RGO/Cu复合材料的相对密度最大,为99.4%。添加GO后,细化晶粒引起的晶界面积扩大以及基体密度降低都增加了电子的散射,从而导致复合材料导电率下降。细晶强化和复压作用提升了复合材料强度和硬度。与纯铜相比,1.0% RGO/Cu显微硬度(80.6HV)提升了40%;0.3% RGO/Cu的抗拉强度(241.3 MPa)提高了32%。若GO的添加量过大,其团聚使得复合材料的致密度降低,从而导致断后伸长率下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪起虎
燕绍九
陈翔
李秀辉
舒小勇
吴廷光
关键词:  RGO/Cu复合材料  复压复烧  显微组织  性能    
Abstract: RGO/Cu composites were prepared by wet milling and repressing and re-sintering process. The effect of GO addition (0%, 0.3%, 0.5%, 1.0%,wt% ) on the microstructure and properties of RGO/Cu composites was investigated. The results reveal that GO was uniformly distributed in Cu matrix and played a role in refining grain. The lubrication of GO promoted grain sliding and rotation, filled the grain gap and improved the density of materials. The relative density of 0.5wt% RGO/Cu composites was the largest (99.4%). As the GO addition, the grain boundary area expansion caused by refined grain and Cu matrix density decrease increased the scattering of electrons, and results in the composite conductivity decreases. The strength and hardness of composites were improved by fine grain strengthening and repressing process. Compared with pure copper, the hardness of 1.0wt% RGO/Cu composites (80.6HV) was increased by 40%, the tensile strength of 0.3wt% RGO/Cu composites (241.3 MPa) was increased by 32%. However, the excess GO will agglomerate, then decrease composites elongation.
Key words:  RGO/Cu composites    repressing and re-sintering process    microstructure    properties
                    发布日期:  2019-07-05
ZTFLH:  TG146.1+1  
作者简介:  洪起虎,硕士,现任中国航发北京航空材料研究院工程师,目前主要致力于石墨烯金属基纳米复合材料和磁性纳米材料的研制及应用研究。燕绍九,博士,毕业于哈尔滨工业大学,现任中国航发北京航空材料研究院研究员,长期从事低维纳米材料制备及应用研究,目前主要致力于石墨烯储能材料,石墨烯金属基纳米复合材料,磁性纳米材料及石墨烯信息材料的研制及应用研究。在国际著名期刊发表学术论文20余篇、专著1部,并担任美国物理协会J. Appl. Phsy. 等期刊审稿人;申请国际专利2项、国家发明专利50余项、国防专利8项;主持和开发重大项目10余项;获得“中航工业航空报国金奖”二等奖。shaojiuyan@126.com
引用本文:    
洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
HONG Qihu, YAN Shaojiu, CHEN Xiang, LI Xiuhui, SHU Xiaoyong, WU Tingguang. Effect of GO Addition on Microstructure and Properties of RGO/Cu Composite. Materials Reports, 2019, 33(z1): 62-66.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/62
1 Li Y P, Xiao Z, Li Z, et al. Journal of Alloys and Compounds,2017,723,1162.
2 Lei R S, Xu S Q, Wang M P, et al. Materials Science and Engineering: A,2013,586,367.
3 刘瑞蕊, 周海涛, 周啸, 等. 材料导报:综述篇,2012,26(10),100.
4 Gorsse S, Ouverard B, Goune M, et al. ChemInform,2015,46(23),42.
5 张蓓, 张治国, 李卫.材料导报:综述篇,2012,26(11),92.
6 宋影影, 李佳节, 张彪.稀有金属与硬质合金,2010,38(3),13.
7 Bolotin K I, Sikes K J, Jiang Z, et al. Solid State Communications,2008,146(9-10),351.
8 Morozov S V, Novoselov K S, Katsnelson M I, et al. Physical Review Letters,2008,100(1),016602.
9 Lee C, Wei X D, Kysar J W, et al. Science,2008,21(5887),385.
10 独涛, 张洪迪, 范同祥.材料导报:综述篇,2015,29(2),121.
11 李勇, 赵亚茹, 李焕, 等.材料导报:综述篇,2016,30(11),71.
12 Zhang X J, Wu K F, He M, et al. Materials Letters,2016,166,67.
13 Yue H Y, Yao L H, Gao X, et al. Journal of Alloys and Compounds,2017,691,755.
14 Chen F Y, Ying J M, Wang Y F, et al. Carbon,2016,96,836.
15 Liu X, Wei D, Zhuang L, et al. Materials Science and Engineering: A,2015,642,1.
16 Barinov A, Malciogğlu O B, Fabris S, et al. Journal of Physical Chemistry C,2009,113(21),9009.
17 Jeong H K, Yun P L, Lahaye R J, et al. Journal of the American Chemical Society,2008,130(4),1362.
18 邓尧, 黄肖容, 邬晓龄.材料导报:综述篇,2012,26(15),84.
19 洪起虎, 燕绍九, 杨程, 等. 材料工程,2016,44(9),1.
20 Stankovich S, Dikin D A, Piner R D, et al. Carbon,2007,45(7),1558.
21 张煜, 宋美惠, 李妍春, 等.化学工程师,2016(2),62.
22 Zhai W, Shi X, Wang M, et al. Wear,2014,310(2),33.
23 Varol T, Canakci. Metal and Materials International,2015,21,704.
24 Dutkiewicz J, Ozga P, Maziarz W, et al. Materials Science and Enginee-ring: A,2015,628,124.
25 杨明. 石墨烯/铜复合材料的制备、组织及性能. 硕士学位论文, 辽宁工业大学,2016.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[4] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[5] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[6] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[7] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[8] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[9] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[10] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[11] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[12] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[13] 李今朝, 陈亮, 黄腾飞, 匡艳军, 邱振生. 关于反应堆压力容器新型用钢SA-508Gr.4N的研究进展[J]. 材料导报, 2019, 33(z1): 382-385.
[14] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[15] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed