Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 366-368    
  金属与金属基复合材料 |
不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能
李梦楠1, 赵宇光2, 谢同伦2
1 吉林省产品质量监督检验院,长春 130103
2 吉林大学材料科学与工程学院,长春 130022
Dry Sliding Friction and Wear Properties of Compacted Graphite Cast Iron Brake Drum
LI Mengnan1, ZHAO Yuguang2, XIE Tonglun2
1 Jilin Product Quality Supervision and Inspection Institute, Changchun 130103
2 College of Materials Science and Engineering, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 1088KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究性能优越且成本可控的蠕墨铸铁制动鼓材料,采用MG-2000型摩擦磨损试验机对不同蠕化率的蠕墨铸铁及灰铸铁进行干滑动摩擦磨损实验。结果表明:与HT250相比,蠕墨铸铁的耐磨性明显增强,相同条件下的耐磨性约为HT250的1.4~4.5倍,且随着载荷与磨损速度的增加,优越性更为明显。蠕墨铸铁的耐磨性随蠕化率升高而降低,其中Ru60 的耐磨性比Ru90 高69%~76%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李梦楠
赵宇光
谢同伦
关键词:  蠕墨铸铁  制动鼓  干滑动摩擦磨损    
Abstract: In order to study the brake drum material of compacted graphite cast iron with superior performance and controllable cost, dry sliding friction and wear tests of compacted graphite cast iron and gray cast iron with different vermicular rate were carried out by MG-2000 friction and wear tester. The results show that the wear resistance of compacted graphite cast iron is 1.4—4.5 times higher than that of HT250 under the same conditions, and the superiority is more obvious with the increase of load and wear speed. The wear resistance of compacted graphite cast iron decreases with the increase of vermicularity, and the wear resistance of Ru60 is 69%—76% higher than that of Ru90.
Key words:  compacted graphite cast iron    brake drum    dry sliding friction and wear
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG143  
作者简介:  李梦楠,2016年6月毕业于吉林大学,获得工学硕士学位。现工作于吉林省产品质量监督检验院,主要研究领域为高强韧铸铁材料。赵宇光,吉林大学材料学院教授,博士研究生导师,吉林省第六批有突出贡献的中青年专业技术人才,长春市第四批有突出贡献专家,吉林省首批创新拔尖人才(第三层次),长春市第二批优秀人才。主要从事铸造合金近终形精铸成型技术、液态金属处理与凝固组织控制、钢铁耐磨材料、金属基复合材料、铸造模具钢强韧化、仿生耐磨复合材料、钛合金的高温氧化与表面改性、金属材料复合物理场处理及电致强化等新材料、新技术方面的研究。作为项目负责人和主要参加人,已完成各类科研项目40余项,其中国家自然科学基金项目6项,国家“七五”、“九五”科技攻关各1项,国家产业化前期关键技术及成套装备研制开发重大项目1项,国家863项目2项,省、部级计划项目16项,与企业合作的开发应用项目10余项。获国家科技发明四等奖、省部级科技进步一、二、三等奖共10项,国家“七五”攻关优秀成果奖1项;授权国家发明专利13项;公开发表学术论文100余篇,其中70余篇被SCI、EI检索。limengnan_job@163.com
引用本文:    
李梦楠, 赵宇光, 谢同伦. 不同蠕化率蠕墨铸铁的干滑动摩擦磨损性能[J]. 材料导报, 2019, 33(z1): 366-368.
LI Mengnan, ZHAO Yuguang, XIE Tonglun. Dry Sliding Friction and Wear Properties of Compacted Graphite Cast Iron Brake Drum. Materials Reports, 2019, 33(z1): 366-368.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/366
1 Abedi H R,Fareghi A,Saghafian H,et al.Wear,2010,268(3-4),622.
2 Kim Sugwon,Cockcroft S L,Omran A M,et al.Journal of Alloys and Compounds,2009,487 (1-2),253.
3 Cueva G,Sinatora A,Guesser W L,et al.Wear, 2003,255(7),1256.
4 邱汉泉.蠕墨铸铁及其生产技术,化学工业出版社,2010.
5 袁兴栋, 郭晓斐, 杨晓洁. 金属材料磨损原理,化学工业出版社,2014.
[1] 董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed